GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 337, No. 6098 ( 2012-08-31), p. 1038-1040
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Geoscience, Springer Science and Business Media LLC, Vol. 3, No. 4 ( 2010-4), p. 262-266
    Type of Medium: Online Resource
    ISSN: 1752-0894 , 1752-0908
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 2396648-8
    detail.hit.zdb_id: 2405323-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Estuaries and Coasts, Springer Science and Business Media LLC, Vol. 44, No. 1 ( 2021-01), p. 137-146
    Abstract: We collected water samples from the Scheldt estuary during December 2015 and November 2016 for methane (CH 4 ) concentration and isotopic composition (δ 13 C and δD values) analyses, to investigate the origin of the excess dissolved CH 4 , which is a common feature in estuaries. The Scheldt estuary is a eutrophic, heterotrophic tidal estuary, located at the border between Belgium and the Netherlands. The gas chromatography and mass spectrometry analyses revealed (1) variable dissolved CH 4 concentrations reaching up to 302.6 nM in surface waters of the Port of Antwerp, which fits within the higher range of values reported for European estuaries, and (2) the presence of surprisingly high isotopic signatures in the upper estuary. While microbial CH 4 production dominates in the lower part of the estuary, we observe a clear trend towards isotopically heavier CH 4 upstream where isotopic signatures as enriched as − 25.2‰ for carbon and + 101‰ for hydrogen were measured. We conclude that microbial oxidation of most of the CH 4 pool could explain such enrichments, but that the origin of riverine CH 4 enriched isotopic signatures remains to be explained. This study identifies peculiar features associated with CH 4 cycling in the Scheldt estuary, paving the way for a more thorough biogeochemical quantification of various production/removal processes.
    Type of Medium: Online Resource
    ISSN: 1559-2723 , 1559-2731
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2229170-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 1 ( 2020-01-28), p. 287-308
    Abstract: Abstract. The annual variation of δD in the tropical lower stratosphere is a critical indicator for the relative importance of different processes contributing to the transport of water vapour through the cold tropical tropopause region into the stratosphere. Distinct observational discrepancies of the δD annual variation were visible in the works of Steinwagner et al. (2010) and Randel et al. (2012). Steinwagner et al. (2010) analysed MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) observations retrieved with the IMK/IAA (Institut für Meteorologie und Klimaforschung in Karlsruhe, Germany, in collaboration with the Instituto de Astrofísica de Andalucía in Granada, Spain) processor, while Randel et al. (2012) focused on ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations. Here we reassess the discrepancies based on newer MIPAS (IMK/IAA) and ACE-FTS data sets, also showing for completeness results from SMR (Sub-Millimetre Radiometer) observations and a ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg and Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulation (Eichinger et al., 2015b). Similar to the old analyses, the MIPAS data set yields a pronounced annual variation (maximum about 75 ‰), while that derived from the ACE-FTS data set is rather weak (maximum about 25 ‰). While all data sets exhibit the phase progression typical for the tape recorder, the annual maximum in the ACE-FTS data set precedes that in the MIPAS data set by 2 to 3 months. We critically consider several possible reasons for the observed discrepancies, focusing primarily on the MIPAS data set. We show that the δD annual variation in the MIPAS data up to an altitude of 40 hPa is substantially impacted by a “start altitude effect”, i.e. dependency between the lowermost altitude where MIPAS retrievals are possible and retrieved data at higher altitudes. In itself this effect does not explain the differences with the ACE-FTS data. In addition, there is a mismatch in the vertical resolution of the MIPAS HDO and H2O data (being consistently better for HDO), which actually results in an artificial tape-recorder-like signal in δD. Considering these MIPAS characteristics largely removes any discrepancies between the MIPAS and ACE-FTS data sets and shows that the MIPAS data are consistent with a δD tape recorder signal with an amplitude of about 25 ‰ in the lowermost stratosphere.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 9, No. 8 ( 2016-08-12), p. 3717-3737
    Abstract: Abstract. Measurements from multiple laboratories have to be related to unifying and traceable reference material in order to be comparable. However, such fundamental reference materials are not available for isotope ratios in atmospheric methane, which led to misinterpretations of combined data sets in the past. We developed a method to produce a suite of synthetic CH4-in-air standard gases that can be used to unify methane isotope ratio measurements of laboratories in the atmospheric monitoring community. Therefore, we calibrated a suite of pure methane gases of different methanogenic origin against international referencing materials that define the VSMOW (Vienna Standard Mean Ocean Water) and VPDB (Vienna Pee Dee Belemnite) isotope scales. The isotope ratios of our pure methane gases range between −320 and +40 ‰ for δ2H–CH4 and between −70 and −40 ‰ for δ13C–CH4, enveloping the isotope ratios of tropospheric methane (about −85 and −47 ‰ for δ2H–CH4 and δ13C–CH4 respectively). Estimated uncertainties, including the full traceability chain, are 〈 1.5 ‰ and 〈 0.2 ‰ for δ2H and δ13C calibrations respectively. Aliquots of the calibrated pure methane gases have been diluted with methane-free air to atmospheric methane levels and filled into 5 L glass flasks. The synthetic CH4-in-air standards comprise atmospheric oxygen/nitrogen ratios as well as argon, krypton and nitrous oxide mole fractions to prevent gas-specific measurement artefacts. The resulting synthetic CH4-in-air standards are referred to as JRAS-M16 (Jena Reference Air Set – Methane 2016) and will be available to the atmospheric monitoring community. JRAS-M16 may be used as unifying isotope scale anchor for isotope ratio measurements in atmospheric methane, so that data sets can be merged into a consistent global data frame.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 117, No. D15 ( 2012-08-16), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 10 ( 2017-05-29), p. 6373-6391
    Abstract: Abstract. Secondary organic aerosol (SOA) plays a central role in air pollution and climate. However, the description of the sources and mechanisms leading to SOA is elusive despite decades of research. While stable isotope analysis is increasingly used to constrain sources of ambient aerosol, in many cases it is difficult to apply because neither the isotopic composition of aerosol precursors nor the fractionation of aerosol forming processes is well characterised. In this paper, SOA formation from ozonolysis of α-pinene – an important precursor and perhaps the best-known model system used in laboratory studies – was investigated using position-dependent and average determinations of 13C in α-pinene and advanced analysis of reaction products using thermal-desorption proton-transfer-reaction mass spectrometry (PTR-MS). The total carbon (TC) isotopic composition δ13C of the initial α-pinene was measured, and the δ13C of the specific carbon atom sites was determined using position-specific isotope analysis (PSIA). The PSIA analysis showed variations at individual positions from −6.9 to +10. 5 ‰ relative to the bulk composition. SOA was formed from α-pinene and ozone in a constant-flow chamber under dark, dry, and low-NOx conditions, with OH scavengers and in the absence of seed particles. The excess of ozone and long residence time in the flow chamber ensured that virtually all α-pinene had reacted. Product SOA was collected on two sequential quartz filters. The filters were analysed offline by heating them stepwise from 100 to 400 °C to desorb organic compounds that were (i) detected using PTR-MS for chemical analysis and to determine the O : C ratio, and (ii) converted to CO2 for 13C analysis. More than 400 ions in the mass range 39–800 Da were detected from the desorbed material and quantified using a PTR-MS. The largest amount desorbed at 150 °C. The O : C ratio of material from the front filter increased from 0.18 to 0.25 as the desorption temperature was raised from 100 to 250 °C. At temperatures above 250 °C, the O : C ratio of thermally desorbed material, presumably from oligomeric precursors, was constant. The observation of a number of components that occurred across the full range of desorption temperatures suggests that they are generated by thermal decomposition of oligomers. The isotopic composition of SOA was more or less independent of desorption temperature above 100 °C. TC analysis showed that SOA was enriched in 13C by 0.6–1.2 ‰ relative to the initial α-pinene. According to mass balance, gas-phase products will be depleted relative to the initial α-pinene. Accordingly, organic material on the back filters, which contain adsorbed gas-phase compounds, is depleted in 13C in TC by 0.7 ‰ relative to the initial α-pinene, and by 1.3 ‰ compared to SOA collected on the front filter. The observed difference in 13C between the gas and particle phases may arise from isotope-dependent changes in the branching ratios in the α-pinene + O3 reaction. Alternatively, some gas-phase products involve carbon atoms from highly enriched and depleted sites, as shown in the PSIA analysis, giving a non-kinetic origin to the observed fractionations. In either case, the present study suggests that the site-specific distribution of 13C in the source material itself governs the abundance of 13C in SOA.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 2 ( 2018-03-02), p. 1207-1231
    Abstract: Abstract. We report results from a worldwide interlaboratory comparison of samples among laboratories that measure (or measured) stable carbon and hydrogen isotope ratios of atmospheric CH4 (δ13C-CH4 and δD-CH4). The offsets among the laboratories are larger than the measurement reproducibility of individual laboratories. To disentangle plausible measurement offsets, we evaluated and critically assessed a large number of intercomparison results, some of which have been documented previously in the literature. The results indicate significant offsets of δ13C-CH4 and δD-CH4 measurements among data sets reported from different laboratories; the differences among laboratories at modern atmospheric CH4 level spread over ranges of 0.5 ‰ for δ13C-CH4 and 13 ‰ for δD-CH4. The intercomparison results summarized in this study may be of help in future attempts to harmonize δ13C-CH4 and δD-CH4 data sets from different laboratories in order to jointly incorporate them into modelling studies. However, establishing a merged data set, which includes δ13C-CH4 and δD-CH4 data from multiple laboratories with desirable compatibility, is still challenging due to differences among laboratories in instrument settings, correction methods, traceability to reference materials and long-term data management. Further efforts are needed to identify causes of the interlaboratory measurement offsets and to decrease those to move towards the best use of available δ13C-CH4 and δD-CH4 data sets.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2017-12-20)
    Abstract: Several viable but conflicting explanations have been proposed to explain the recent ~8 p.p.b. per year increase in atmospheric methane after 2006, equivalent to net emissions increase of ~25 Tg CH 4 per year. A concurrent increase in atmospheric ethane implicates a fossil source; a concurrent decrease in the heavy isotope content of methane points toward a biogenic source, while other studies propose a decrease in the chemical sink (OH). Here we show that biomass burning emissions of methane decreased by 3.7 (±1.4) Tg CH 4 per year from the 2001–2007 to the 2008–2014 time periods using satellite measurements of CO and CH 4 , nearly twice the decrease expected from prior estimates. After updating both the total and isotopic budgets for atmospheric methane with these revised biomass burning emissions (and assuming no change to the chemical sink), we find that fossil fuels contribute between 12–19 Tg CH 4 per year to the recent atmospheric methane increase, thus reconciling the isotopic- and ethane-based results.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Atmospheric Measurement Techniques Vol. 9, No. 12 ( 2016-12-15), p. 6069-6079
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 9, No. 12 ( 2016-12-15), p. 6069-6079
    Abstract: Abstract. A method for retrieval of 18O-substituted isotopomers of O3 in the stratosphere with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is presented. Using a smoothing regularisation constraint, volume mixing ratio profiles are retrieved for the main isotopologue and the symmetric and asymmetric isotopomers of singly substituted O3. For the retrieval of the heavy isotopologues, two microwindows in the MIPAS A band (685–970 cm−1) and six in the AB band (1020–1170 cm−1) are used. As the retrievals are performed as perturbations on the previously retrieved a priori profiles, the vertical resolution of the individual isotopomer profiles is very similar, which is important when calculating the ratio between two isotopomers. The performance of the method is evaluated using 1044 vertical profiles recorded with MIPAS on 1 July 2003. The mean values are separated by latitude bands, along with estimates of their uncertainties. The asymmetric isotopomer shows a mean enrichment of  ∼ 8 %, with a vertical profile that increases up to 33 km and decreases at higher altitudes. This decrease with altitude is a robust result that does not depend on retrieval settings, and it has not been reported clearly in previously published datasets. The symmetric isotopomer is considerably less enriched, with mean values around 3 % and with a large spread. In individual retrievals the uncertainty of the enrichment is dominated by the measurement noise (2–4 %), which can be reduced by averaging multiple retrievals; systematic uncertainties linked to the retrieval are generally small at  ∼ 0.5 %, but this is likely underestimated because the uncertainties in key spectroscopic parameters are unknown. The variabilities in the retrieval results are largest for the Southern Hemisphere.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...