GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  The European Physical Journal A Vol. 58, No. 12 ( 2022-12-16)
    In: The European Physical Journal A, Springer Science and Business Media LLC, Vol. 58, No. 12 ( 2022-12-16)
    Abstract: We present the design, prototype developments and test results of the new time-of-flight detector (ToFD) which is part of the R $$^3$$ 3 B experimental setup at GSI and FAIR, Darmstadt, Germany. The ToFD detector is able to detect heavy-ion residues of all charges at relativistic energies with a relative energy precision $$\sigma _{\varDelta E}/{\varDelta E}$$ σ Δ E / Δ E of up to 1% and a time precision of up to 14 ps (sigma). Together with an elaborate particle-tracking system, the full identification of relativistic ions from hydrogen up to uranium in mass and nuclear charge is possible.
    Type of Medium: Online Resource
    ISSN: 1434-601X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1413603-X
    detail.hit.zdb_id: 1459066-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Optics, Optica Publishing Group, Vol. 56, No. 18 ( 2017-06-20), p. 5182-
    Type of Medium: Online Resource
    ISSN: 0003-6935 , 1539-4522
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2017
    detail.hit.zdb_id: 207387-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Tellus B: Chemical and Physical Meteorology, Stockholm University Press, Vol. 67, No. 1 ( 2015-01-01), p. 27989-
    Type of Medium: Online Resource
    ISSN: 1600-0889 , 0280-6509
    RVK:
    RVK:
    Language: Unknown
    Publisher: Stockholm University Press
    Publication Date: 2015
    detail.hit.zdb_id: 2026992-4
    detail.hit.zdb_id: 246061-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: EPJ Web of Conferences, EDP Sciences, Vol. 237 ( 2020), p. 03005-
    Abstract: Installed onboard the German research aircraft HALO, the integrated-path differential-absorption (IPDA) lidar CHARM-F measures weighted vertical columns of both greenhouse gases (GHG) below the aircraft and along its flight track, aiming at high accuracy and precision. Results will be shown from the deployment during the CoMet field campaign that was carried out in spring 2018, with its main focus on one of the major European hot spots in methane emissions: the Upper Silesian Coal Basin (USCB) in Poland. First analyses reveal a measurement precision of below 0.5% for 20-km averages and also low bias, which was assessed by comparison with in-situ instruments. The measurements flights were designed to capture individual CH 4 and CO 2 plumes from e.g. coal mine venting and coal-fired power plants, respectively, but also to measure large and regional scale GHG gradients and to provide comparisons with the Total Carbon Column Observing Network (TCCON). Many other different instruments, both airborne and ground-based, complemented the lidar measurements to provide a comprehensive dataset for model analyses. CHARM-F also acts as the airborne demonstrator for MERLIN, the “Methane Remote Lidar Mission”, conducted by the German and French space agencies, DLR and CNES, with launch foreseen in ~ 2024. In this context, the airborne lidar data are likewise important for mission support such as for e.g. algorithm development and improvement and, moreover, the CoMet mission was also an important step for MERLIN validation preparation.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 4 ( 2023-02-27), p. 2699-2728
    Abstract: Abstract. Power plants and large industrial facilities contribute more than half of global anthropogenic CO2 emissions. Quantifying the emissions of these point sources is therefore one of the main goals of the planned constellation of anthropogenic CO2 monitoring satellites (CO2M) of the European Copernicus program. Atmospheric transport models may be used to study the capabilities of such satellites through observing system simulation experiments and to quantify emissions in an inverse modeling framework. How realistically the CO2 plumes of power plants can be simulated and how strongly the results may depend on model type and resolution, however, is not well known due to a lack of observations available for benchmarking. Here, we use the unique data set of aircraft in situ and remote sensing observations collected during the CoMet (Carbon Dioxide and Methane Mission) measurement campaign downwind of the coal-fired power plants at Bełchatów in Poland and Jänschwalde in Germany in 2018 to evaluate the simulations of six different atmospheric transport models. The models include three large-eddy simulation (LES) models, two mesoscale numerical weather prediction (NWP) models extended for atmospheric tracer transport, and one Lagrangian particle dispersion model (LPDM) and cover a wide range of model resolutions from 200 m to 2 km horizontal grid spacing. At the time of the aircraft measurements between late morning and early afternoon, the simulated plumes were slightly (at Jänschwalde) to highly (at Bełchatów) turbulent, consistent with the observations, and extended over the whole depth of the atmospheric boundary layer (ABL; up to 1800 m a.s.l. (above sea level) in the case of Bełchatów). The stochastic nature of turbulent plumes puts fundamental limitations on a point-by-point comparison between simulations and observations. Therefore, the evaluation focused on statistical properties such as plume amplitude and width as a function of distance from the source. LES and NWP models showed similar performance and sometimes remarkable agreement with the observations when operated at a comparable resolution. The Lagrangian model, which was the only model driven by winds observed from the aircraft, quite accurately captured the location of the plumes but generally underestimated their width. A resolution of 1 km or better appears to be necessary to realistically capture turbulent plume structures. At a coarser resolution, the plumes disperse too quickly, especially in the near-field range (0–8 km from the source), and turbulent structures are increasingly smoothed out. Total vertical columns are easier to simulate accurately than the vertical distribution of CO2, since the latter is critically affected by profiles of vertical stability, especially near the top of the ABL. Cross-sectional flux and integrated mass enhancement methods applied to synthetic CO2M data generated from the model simulations with a random noise of 0.5–1.0 ppm (parts per million) suggest that emissions from a power plant like Bełchatów can be estimated with an accuracy of about 20 % from single overpasses. Estimates of the effective wind speed are a critical input for these methods. Wind speeds in the middle of the ABL appear to be a good approximation for plumes in a well-mixed ABL, as encountered during CoMet.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D19 ( 2000-10-16), p. 24251-24261
    Abstract: During the fall 1997 North Atlantic Regional Experiment (NARE 97), two separate intercomparisons of aircraft‐based carbon monoxide measurement instrumentation were conducted. On September 2, CO measurements were simultaneously made aboard the National Oceanic and Atmospheric Administration (NOAA) WP‐3 by vacuum ultraviolet (VUV) fluorescence and by tunable diode laser absorption spectroscopy (TDLAS). On September 18, an intercomparison flight was conducted between two separate instruments, both employing the VUV fluorescence method, on the NOAA WP‐3 and the U.K. Meteorological Office C‐130 Hercules. The results indicate that both of the VUV fluorescence instruments and the TDLAS system are capable of measuring ambient CO accurately and precisely with no apparent interferences in 5 s. The accuracy of the measurements, based upon three independent calibration systems, is indicated by the agreement to within 11% with systematic offsets of less than 1 ppbv. In addition, one of the groups participated in the Measurement of Air Pollution From Satellite (MAPS) intercomparison [ Novelli et al ., 1998] with a different measurement technique but very similar calibration system, and agreed with the accepted analysis to within 5%. The precision of the measurements is indicated by the variability of the ratio of simultaneous measurements from the separate instruments. This variability is consistent with the estimated precisions of 1.5 ppbv and 2.2 ppbv for the 5 s average results of the C‐130 and the WP‐3 instruments, respectively, and indicates a precision of approximately 3.6% for the TDLAS instrument. The excellent agreement of the instruments in both intercomparisons demonstrates that significant interferences in the measurements are absent in air masses that ranged from 7 km in the midtroposphere to boundary layer conditions including subtropical marine air and continental outflow with embedded urban plumes. The intercomparison of the two VUV instruments that differed widely in their design indicates that the VUV fluorescence technique for CO measurements is not particularly sensitive to the details of its implementation. These intercomparisons help to establish the reliability of ambient CO measurements by the VUV fluorescence technique.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Atmospheres Vol. 101, No. D22 ( 1996-12-20), p. 29317-29334
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 101, No. D22 ( 1996-12-20), p. 29317-29334
    Abstract: A mesoscale chemistry transport model driven by meteorological data from a numerical weather prediction model is used to calculate ozone, carbon monoxide, oxides of nitrogen, and other chemical species over the North Atlantic for a 13‐days period (August 18–30, 1993). The model has a circumpolar grid so that the boundary condition problems are minimized, and the influence of North American emissions on the chemical composition of the troposphere over the North Atlantic and Europe is calculated. During the first part of the period there is a zonal flow across the North Atlantic in the free troposphere; later, there is a strong north‐south as well as vertical component in the advection field. The variability in the concentrations of ozone in the free troposphere is mainly caused by dynamical processes, while the chemical modification is small over an integration time of less than two weeks. A continental plume off the North American continent extending 2000 km or more into the North Atlantic is identified toward the end of the calculation period. There is then a maximum in the concentration of ozone around 1 km above the sea surface, with a much lower concentration in the marine boundary layer close to the ocean surface. Measurements from the U.K. Meteorological Office Hercules C‐130 in the free troposphere off the Atlantic Provinces, across the Atlantic Ocean, and around the Azores together with ozone soundings from the Azores, Bermuda, and Iceland were used for model comparison. The calculations indicate that in the free troposphere the initial conditions as well as the upper boundary conditions are important for ozone distribution. In the upper troposphere the net change in the chemical formation rate of ozone due to a change in the NO x concentration is quite independent of the absolute value of the ozone concentration itself and, consequently, the choice of boundary conditions for ozone is not so important in this context. In the lower troposphere the change in the net chemical formation rate of ozone, which follows from a change in the concentration of NO x , shows a marked dependence on the concentration of ozone.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Environmental Pollution, Elsevier BV, Vol. 195 ( 2014-12), p. 282-291
    Type of Medium: Online Resource
    ISSN: 0269-7491
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 280652-6
    detail.hit.zdb_id: 2013037-5
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2014
    In:  Journal of Geophysical Research: Atmospheres Vol. 119, No. 8 ( 2014-04-27), p. 4874-4887
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 119, No. 8 ( 2014-04-27), p. 4874-4887
    Abstract: CH4 emission inventory estimates from Swiss agriculture may be too low Cavity ring‐down CH4 spectrometer works reliably on small aircraft (motorglider) Eddy covariance flux more reliable than the boundary layer budget approach
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2014
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Global Change Biology, Wiley, Vol. 28, No. 2 ( 2022-01), p. 588-611
    Abstract: High‐quality atmospheric CO 2  measurements are sparse in Amazonia, but can provide critical insights into the spatial and temporal variability of sources and sinks of CO 2 . In this study, we present the first 6 years (2014–2019) of continuous, high‐precision measurements of atmospheric CO 2 at the Amazon Tall Tower Observatory (ATTO, 2.1°S, 58.9°W). After subtracting the simulated background concentrations from our observational record, we define a CO 2 regional signal ( ) that has a marked seasonal cycle with an amplitude of about 4 ppm. At both seasonal and inter‐annual scales, we find differences in phase between and the local eddy covariance net ecosystem exchange (EC‐NEE), which is interpreted as an indicator of a decoupling between local and non‐local drivers of . In addition, we present how the 2015–2016 El Niño‐induced drought was captured by our atmospheric record as a positive 2σ anomaly in both the wet and dry season of 2016. Furthermore, we analyzed the observed seasonal cycle and inter‐annual variability of together with net ecosystem exchange (NEE) using a suite of modeled flux products representing biospheric and aquatic CO 2 exchange. We use both non‐optimized and optimized (i.e., resulting from atmospheric inverse modeling) NEE fluxes as input in an atmospheric transport model (STILT). The observed shape and amplitude of the seasonal cycle was captured neither by the simulations using the optimized fluxes nor by those using the diagnostic Vegetation and Photosynthesis Respiration Model (VPRM). We show that including the contribution of CO 2 from river evasion improves the simulated shape (not the magnitude) of the seasonal cycle when using a data‐driven non‐optimized NEE product (FLUXCOM). The simulated contribution from river evasion was found to be 25% of the seasonal cycle amplitude. Our study demonstrates the importance of the ATTO record to better understand the Amazon carbon cycle at various spatial and temporal scales.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...