GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Years
  • 1
    In: Chemical geology, New York, NY [u.a.] : Elsevier, 1966, 266(2009), 3/4, Seite 350-363, 0009-2541
    In: volume:266
    In: year:2009
    In: number:3/4
    In: pages:350-363
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 0009-2541
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-19
    Description: Based upon the molecular and isotopic composition of hydrocarbons it has been proposed that the source of CH4 in Gulf of Cadiz mud volcanoes (MV) is a mixture of deep sourced thermogenic CH4 and shallow biogenic CH4. We directly investigated this possibility by comparing porewater CH4 concentrations and their δ13Cvalues with the potential for Archaeal methanogenesis in Gulf of Cadiz mud volcano (MV) sediments (Captain Arutyunov, Bonjardim, Ginsburg and Porto) using 14C-rate measurements. The CH4 has a deep sourced thermogenic origin (δ13C ∼ −49‰) but becomes 13C-depleted in and beneath the zone of anaerobic oxidation of methane (AOM) where the rates of hydrogenotrophic methanogenesis increase. Thus we infer that a portion of AOMproduced CO2 is being recycled to CH4 by methanogens yielding further 13C-depleted CH4, which might be misinterpreted as indicative of a fully shallow biogenic origin for this gas. Production of H2 is related to compositional changes in sedimentary organic matter, or to upward flux of substrate-enriched fluids. In contrast to otherMVsin the Gulf of Cadiz, GinsburgMVfluids are enriched in SO2−4 and contain very high concentrations of acetate (2478 μM below 150 cmbsf); however, the high levels of acetate did not stimulate methanogenesis but instead were oxidized to CO2 coupled to sulphate reduction. Both anaerobic oxidation of thermogenic CH4 linked to shallow methanogenesis and fluid geochemistry control the recycling of deep-sourced carbon at Gulf of Cadiz MVs, impacting near-surface δ13C-CH4 values.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Highlights • There is direct and indirect evidence for hydrate occurrence in several areas around Europe. • Hydrate is particularly widespread offshore Norway and Svalbard and in the Black Sea. • Hydrate occurrence often coincides with conventional thermogenic hydrocarbon provinces. • The regional abundance of hydrate in Europe is poorly known. Abstract Large national programs in the United States and several Asian countries have defined and characterised their marine methane hydrate occurrences in some detail, but European hydrate occurrence has received less attention. The European Union-funded project “Marine gas hydrate – an indigenous resource of natural gas for Europe” (MIGRATE) aimed to determine the European potential inventory of exploitable gas hydrate, to assess current technologies for their production, and to evaluate the associated risks. We present a synthesis of results from a MIGRATE working group that focused on the definition and assessment of hydrate in Europe. Our review includes the western and eastern margins of Greenland, the Barents Sea and onshore and offshore Svalbard, the Atlantic margin of Europe, extending south to the northwestern margin of Morocco, the Mediterranean Sea, the Sea of Marmara, and the western and southern margins of the Black Sea. We have not attempted to cover the high Arctic, the Russian, Ukrainian and Georgian sectors of the Black Sea, or overseas territories of European nations. Following a formalised process, we defined a range of indicators of hydrate presence based on geophysical, geochemical and geological data. Our study was framed by the constraint of the hydrate stability field in European seas. Direct hydrate indicators included sampling of hydrate; the presence of bottom simulating reflectors in seismic reflection profiles; gas seepage into the ocean; and chlorinity anomalies in sediment cores. Indirect indicators included geophysical survey evidence for seismic velocity and/or resistivity anomalies, seismic reflectivity anomalies or subsurface gas escape structures; various seabed features associated with gas escape, and the presence of an underlying conventional petroleum system. We used these indicators to develop a database of hydrate occurrence across Europe. We identified a series of regions where there is substantial evidence for hydrate occurrence (some areas offshore Greenland, offshore west Svalbard, the Barents Sea, the mid-Norwegian margin, the Gulf of Cadiz, parts of the eastern Mediterranean, the Sea of Marmara and the Black Sea) and regions where the evidence is more tenuous (other areas offshore Greenland and of the eastern Mediterranean, onshore Svalbard, offshore Ireland and offshore northwest Iberia). We provide an overview of the evidence for hydrate occurrence in each of these regions. We conclude that around Europe, areas with strong evidence for the presence of hydrate commonly coincide with conventional thermogenic hydrocarbon provinces.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Widespread mud volcanism across the thick (〈= 14 km) seismically active sedimentary prism of the Gulf of Cadiz is driven by tectonic activity along extensive strike-slip faults and thrusts associated with the accommodation of the Africa-Eurasia convergence and building of the Arc of Gibraltar, respectively. An investigation of eleven active sites located on the Moroccan Margin and in deeper waters across the wedge showed that light volatile hydrocarbon gases vented at the mud volcanoes (MVs) have distinct, mainly thermogenic, origins. Gases of higher and lower thermal maturities are mixed at Ginsburg and Mercator MVs on the Moroccan Margin, probably because high maturity gases that are trapped beneath evaporite deposits are transported upwards at the MVs and mixed with shallower, less mature, thermogenic gases during migration. At all other sites except for the westernmost Porto MV, delta C-13-CH4 and delta H-2-CH4 values of similar to -50 parts per thousand and -200 parts per thousand, respectively, suggest a common origin for methane; however, the ratio of CH4/(C2H6 + C3H8) varies from similar to 10 to > 7000 between sites. Mixing of shallow biogenic and deep thermogenic gases cannot account for the observed compositions which instead result mainly from extensive migration of thermogenic gases in the deeply-buried sediments, possibly associated with biodegradation of C2+ homologues and secondary methane production at Captain Arutyunov and Carlos Ribeiro MVs. At the deep-water Bonjardim, Olenin and Carlos Ribeiro MVs, generation of C2+-enriched gases is probably promoted by high heat flux anomalies which have been measured in the western area of the wedge. At Porto MV, gases are highly enriched in CH4 having delta C-13-CH4 similar to -50 parts per thousand, as at most sites, but markedly lower delta H-2-CH4 Values 〈 -250 parts per thousand, suggesting that it is not generated by thermal cracking of n-alkanes but rather that it has a deep Archaeal origin. The presence of petroleum-type hydrocarbons is consistent with a thermogenic origin, and at sites where CH4 is predominant support the suggestion that gases have experienced extensive transport during which they mobilized oil from sediments similar to 2-4 km deep. These fluids then migrate into shallower, thermally immature muds, driving their mobilization and extrusion at the seafloor. At Porto MV, the limited presence of petroleum in mud breccia sediments further supports the hypothesis of a predominantly deep microbial origin of CH4. (C) 2009 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...