GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Historical geology ; Geology History ; Continental margins History ; Geology Research ; Continental margins Research ; Geodynamics ; Continental margins ; Continental margins ; Research ; Geodynamics ; Geology ; Geology ; Research ; Historical geology ; North Atlantic Ocean ; History ; Atlantischer Ozean Nordost ; Kontinentalrand ; Rift ; Extension ; Sedimentationsbecken ; Plattentektonik ; Island-Färöer-Rücken ; Kontinentalrand ; Rifting ; Störung ; Becken ; Tektonik ; Europäisches Nordmeer ; Mittelatlantischer Rücken Nord ; Reykjanesrücken ; Shetlandinseln ; Jan-Mayen-Rücken ; Kolbeinsey-Rücken ; Norwegensee ; Grönlandsee ; Seafloor spreading ; Aufsatzsammlung
    Description / Table of Contents: [I].Article:The NE Atlantic region: a reappraisal of crustal structure, tectonostratigraphy and magmatic evolution - an introduction to the NAG-TEC project /Gwenn Péron-Pinvidic, John R. Hopper, Martyn Stoker, Carmen Gaina, Thomas Funck, Uni E. Árting and Johannes Cornelis Doornenbal.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (455 Seiten) , Illustrationen, Karten
    ISBN: 9781786203700 , 1786203707
    Series Statement: Geological Society special publication no. 447
    DDC: 551.70091633
    Language: English
    Note: Includes bibliographical references and index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Geology History ; Continental margins History ; Geology Research ; Continental margins Research ; Geodynamics ; Magmas Evolution ; Aufsatzsammlung ; Atlantischer Ozean Nordost ; Kontinentalrand ; Rift ; Extension ; Sedimentationsbecken ; Plattentektonik ; Island-Färöer-Rücken ; Kontinentalrand ; Rifting ; Störung ; Becken ; Tektonik ; Europäisches Nordmeer ; Mittelatlantischer Rücken Nord ; Reykjanesrücken ; Shetlandinseln ; Jan-Mayen-Rücken ; Kolbeinsey-Rücken ; Norwegensee ; Grönlandsee ; Seafloor spreading ; Aufsatzsammlung ; Atlantischer Ozean Nordost ; Kontinentalrand ; Rift ; Extension ; Sedimentationsbecken ; Plattentektonik ; Island-Färöer-Rücken ; Kontinentalrand ; Rifting ; Störung ; Becken ; Tektonik ; Europäisches Nordmeer ; Mittelatlantischer Rücken Nord ; Reykjanesrücken ; Shetlandinseln ; Jan-Mayen-Rücken ; Kolbeinsey-Rücken ; Norwegensee ; Grönlandsee ; Seafloor spreading ; Aufsatzsammlung
    Description / Table of Contents: The NAG-TEC project was a collaborative effort by the British Geological Survey, the Geological Survey of Denmark and Greenland, the Geological Survey of Ireland, the Geological Survey of the Netherlands, the Geological Survey of Northern Ireland, the Geological Survey of Norway, Iceland GeoSurvey and the Faroese Geological Survey (Jarðfeingi), along with a number of academic partners and significant support from industry. The main focus was to investigate the tectonic evolution of the region with a particular emphasis on basin evolution along conjugate margins. A key outcome was the development of a new tectonostratigraphic atlas and database that includes comprehensive geological and geophysical information relevant for understanding the Devonian to present evolution of the NE Atlantic margins. These provide the foundation upon which ongoing research and exploration of the area can build. This Special Publication provides some of the first scientific results and analysis based on the project, including regional stratigraphic analysis and correlations, crustal structure and interpretation of geophysical data sets, plate kinematics and the evolution of igneous provinces.--
    Type of Medium: Book
    Pages: vi, 467 Seiten , Illustrationen, Karten, Diagramme
    ISBN: 9781786202789
    Series Statement: Geological Society Special publication no. 447
    DDC: 551.70091633
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Scientific Drilling, Copernicus Publications, 28, pp. 1-27, ISSN: 1816-3459
    Publication Date: 2020-12-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Geological Society
    In:  EPIC3The NE Atlantic Region: A Reappraisal of Crustal Structure, Tectonostratigraphy and Magmatic Evolution, Geological Society, London, Special Publications, London, Geological Society
    Publication Date: 2021-01-26
    Description: The Early Eocene continental break-up between the NE Greenland and the mid- Norwegian–SW Barents Sea margins was associated with voluminous magmatism and led to the emplacement of massive volcanic complexes including wedges of seawards-dipping reflections (SDR). We study the distribution of these break-up-related volcanic rocks along the NE Greenland margin by revisiting existing seismic reflection data and comparing our observations to betterstudied segments of the conjugate margin. Seismic facies types match between the conjugate margins and show strong lateral variations. Seaward-dipping wedges are mapped offshore East Greenland, the conjugate to the Vøring continental margin. The geophysical signature of the SDRs becomes less visible towards the north, as it does along the conjugate Lofoten–Vestera°len margin. We suggest that the Traill Ø volcanic ridge is a result of plume–ridge interactions formed between approximately 54 and 47 Ma. North of the East Greenland Ridge, strong basement reflections conjugate to the Vestbakken Volcanic Province are interpreted as lava flows or ‘spurious’ SDRs. We discuss our findings in conjunction with results from seismic wide-angle experiments, gravity and magnetic data. We focus on the spatial and temporal relationships of the break-up volcanic rocks, and their structural setting in a late rift and initial oceanic drift stage.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-21
    Description: The modern polar cryosphere reflects an extreme climate state with profound temperature gradients towards high-latitudes. It developed in association with stepwise Cenozoic cooling, beginning with ephemeral glaciations and the appearance of sea ice in the late middle Eocene. The polar ocean gateways played a pivotal role in changing the polar and global climate, along with declining greenhouse gas levels. The opening of the Drake Passage finalized the oceanographic isolation of Antarctica, some 40 Ma ago. The Arctic Ocean was an isolated basin until the early Miocene when rifting and subsequent sea-floor spreading started between Greenland and Svalbard, initiating the opening of the Fram Strait / Arctic-Atlantic Gateway (AAG). Although this gateway is known to be important in Earth’s past and modern climate, little is known about its Cenozoic development. However, the opening history and AAG’s consecutive widening and deepening must have had a strong impact on circulation and water mass exchange between the Arctic Ocean and the North Atlantic. To study the AAG’s complete history, ocean drilling at two primary sites and one alternate site located between 73°N and 78°N in the Boreas Basin and along the East Greenland continental margin are proposed. These sites will provide unprecedented sedimentary records that will unveil (1) the history of shallow-water exchange between the Arctic Ocean and the North Atlantic, and (2) the development of the AAG to a deep-water connection and its influence on the global climate system. The specific overarching goals of our proposal are to study: (1) the influence of distinct tectonic events in the development of the AAG and the formation of deep water passage on the North Atlantic and Arctic paleoceanography, and (2) the role of the AAG in the climate transition from the Paleogene greenhouse to the Neogene icehouse for the long-term (~50 Ma) climate history of the northern North Atlantic. Getting a continuous record of the Cenozoic sedimentary succession that recorded the evolution of the Arctic-North Atlantic horizontal and vertical motions, and land and water connections will also help better understanding the post-breakup evolution of the NE Atlantic conjugate margins and associated sedimentary basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Geological Society
    In:  EPIC3The NE Atlantic Region: A Reappraisal of Crustal Structure, Tectonostratigraphy and Magmatic Evolution, Geological Society Special Publications, London, Geological Society
    Publication Date: 2017-11-27
    Description: An overview of the distribution of volcanic facies units was compiled over the North Atlantic region. The new maps establish the pattern of volcanism associated with breakup and the initiation of seafloor spreading over the main part of the North Atlantic Igneous Province (NAIP). The maps include new analysis of the Faroe–Shetlands region that allows for a consistent volcanic facies map to be constructed over the entire eastern margin of the North Atlantic for the first time. A key result is that the various conjugate margin segments show a number of asymmetric patterns that are interpreted to result in part from pre-existing crustal and lithospheric structures. The compilation further shows that while the lateral extent of volcanism extends equally far to the south of the Iceland hot spot as it does to the north, the volume of material emplaced to the south is nearly double of that to the north. This suggests that a possible southward deflection of the Iceland mantle plume is a long-lived phenomenon originating during or shortly after impact of the plume.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-03
    Description: The modern polar cryosphere reflects an extreme climate state with profound temperature gradients towards high-latitudes. It developed in association with stepwise Cenozoic cooling, beginning with ephemeral glaciations and the appearance of sea ice in the late middle Eocene. The polar ocean gateways played a pivotal role in changing the polar and global climate, along with declining greenhouse gas levels. The opening of the Drake Passage finalized the oceanographic isolation of Antarctica, some 40 Ma ago. The Arctic Ocean was an isolated basin until the early Miocene when rifting and subsequent sea-floor spreading started between Greenland and Svalbard, initiating the opening of the Fram Strait / Arctic-Atlantic Gateway (AAG). Although this gateway is known to be important in Earth’s past and modern climate, little is known about its Cenozoic development. However, the opening history and AAG’s consecutive widening and deepening must have had a strong impact on circulation and water mass exchange between the Arctic Ocean and the North Atlantic. To study the AAG’s complete history, ocean drilling at two primary sites and one alternate site located between 73°N and 78°N are proposed. These sites will provide unprecedented sedimentary records that will unveil (1) the history of shallow-water exchange between the Arctic Ocean and the North Atlantic, and (2) the development of the AAG to a deep-water connection and its influence on the global climate system. The specific overarching goals of our proposal are to study: • the influence of distinct tectonic events in the development of the AAG and the formation of deep water passage on the North Atlantic and Arctic paleoceanography, and • the role of the AAG in the climate transition from the Paleogene greenhouse to the Neogene icehouse for the long-term (~50 Ma) climate history of the northern North Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-05-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association of Petroleum Geologists (AAPG)
    In:  EPIC33P Arctic: Polar Petroleum Potential Conference & Exhibition, Stavanger, Norway, 2015-09-29-2015-10-02American Association of Petroleum Geologists (AAPG)
    Publication Date: 2016-01-21
    Description: The modern polar cryosphere reflects an extreme climate state with profound temperature gradients towards high-latitudes. It developed in association with stepwise Cenozoic cooling, beginning with ephemeral glaciations and the appearance of sea ice in the late middle Eocene. The polar ocean gateways played a pivotal role in changing the polar and global climate, along with declining greenhouse gas levels. The opening of the Drake Passage finalized the oceanographic isolation of Antarctica, some 40 Ma ago. The Arctic Ocean was an isolated basin until the early Miocene when rifting and subsequent sea-floor spreading started between Greenland and Svalbard, initiating the opening of the Fram Strait / Arctic-Atlantic Gateway (AAG). Although this gateway is known to be important in Earth’s past and modern climate, little is known about its Cenozoic development. However, the opening history and AAG’s consecutive widening and deepening must have had a strong impact on circulation and water mass exchange between the Arctic Ocean and the North Atlantic. To study the AAG’s complete history, ocean drilling at two primary sites and one alternate site located between 73°N and 78°N in the Boreas Basin and along the East Greenland continental margin are proposed. These sites will provide unprecedented sedimentary records that will unveil (1) the history of shallow-water exchange between the Arctic Ocean and the North Atlantic, and (2) the development of the AAG to a deep-water connection and its influence on the global climate system. The specific overarching goals of our proposal are to study: (1) the influence of distinct tectonic events in the development of the AAG and the formation of deep water passage on the North Atlantic and Arctic paleoceanography, and (2) the role of the AAG in the climate transition from the Paleogene greenhouse to the Neogene icehouse for the long-term (~50 Ma) climate history of the northern North Atlantic. Getting a continuous record of the Cenozoic sedimentary succession that recorded the evolution of the Arctic-North Atlantic horizontal and vertical motions, and land and water connections will also help better understanding the post-breakup evolution of the NE Atlantic conjugate margins and associated sedimentary basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...