GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 8 (1996), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The lamprey normally swims with the dorsal side up. Illumination of one eye shifts the set-point of the vestibular roll control system, however, so that the animal swims with a roll tilt towards the source of light (the dorsal light response). A tilted orientation is often maintained for up to 1 min after the stimulation. In the present study, the basis for this behaviour was investigated at the neuronal level. The middle rhombencephalic reticular nucleus (MRRN) is considered a main nucleus for the control of roll orientation in lampreys. Practically all MRRN neurons receive vestibular and visual input and project to the spinal cord. Earlier extracellular experiments had shown that optic nerve stimulation potentiates the response to vestibular stimulation in the ipsilateral MRRN. This most likely represents a neural correlate of the dorsal light response. Experiments were carried out in vitro on the isolated brainstem of the silver lamprey (Ichthyomyzon unicuspis). MRRN cells were recorded intracellularly, and the overall activity of descending systems was monitored with bilateral extracellular electrodes. The responses to 10 Hz optic nerve stimulation and 1 Hz vestibular nerve stimulation, and the influence of optic nerve stimulation on the vestibular responses, were investigated. In most preparations, optic nerve stimulation excited practically all ipsilateral MRRN cells. After stimulation, the cell was typically depolarized and showed an increased level of synaptic noise for up to 80 s. In contralateral MRRN neurons, optic nerve stimulation usually evoked hyperpolarization or no response. Vestibular nerve stimulation evoked compound excitatory postsynaptic potentials (EPSPs) or spikes in -90% of the cells, both ipsilaterally and contralaterally. A smaller subpopulation of MRRN cells (-10%) received vestibular inhibition. In 26 of 48 recorded MRRN cells, the response to vestibular stimulation was potentiated after ipsilateral optic nerve stimulation. The potentiation was seen in cells receiving either excitatory or inhibitory vestibular input as an increase in EPSP amplitudelspiking (85%) and a decrease in inhibitory postsynaptic potential amplitude (15%) respectively. In most cases the vestibular responses did not return to control levels during the testing period (10–30 min), and thus the visual stimulation most likely induced long-lasting changes in the functional connectivity of the roll control network, in addition to the short-lasting afteractivity. In four of the 11 cells recorded contralateral to the stimulated optic nerve, a depression of the vestibular response could be seen. In potentiated cells, single vestibular pulses often evoked longer episodes of large synaptic noise and sometimes spiking. In the latter case, the action potentials appeared with highly variable latency after each stimulation pulse. This indicates that an important mechanism underlying the potentiation may be a long-lasting increase in excitability in a pool of unidentified interneurons located either upstream of the MRRN cells, relaying vestibular and visual inputs, or downstream, providing positive feedback.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of fish biology 14 (1979), S. 0 
    ISSN: 1095-8649
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: An electromyographical study has been made of carp swimming muscles at various points along the body length during sustained and burst locomotion. During sustained swimming, red muscles show a constant time lag between activation of anterior and posterior segments which is practically independent of the speed of locomotion. In contrast, anterior and posterior homolateral segments are activated simultaneously during bursts of rapid movement. This pattern of co-ordination between body segments differs from that reported for other species.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Central pattern generator ; Neuron polarization ; Tetrodotoxin ; Cobalt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Neurons from the isolated pedal ganglia of the marine mollusc Clione limacina were recorded from intracellularly during generation of the locomotory rhythm. Polarization of single type 7 or type 8 interneurons (which discharge in the D-and V-phases of a swim cycle, respectively) strongly affected activity of the rhythm generator. Injection of depolarizing and hyperpolarizing current usually resulted in shortening and lengthening of a swim cycle, respectively. A short pulse of hyperpolarizing current shifted the phase of the rhythmic generator. The same effect could be evoked by polarization of efferent neurons of types 2, 3 and 4 which are electrically coupled to interneurons. On the contrary, polarization of types 1, 6 and 10 efferent neurons, having no electrical connections with interneurons, did not affect the locomotory rhythm. 2. A number of observations indicate that type 7 and 8 interneurons constitute the main source of postsynaptic potentials that were observed in all the “rhythmic” neurons of the pedal ganglia. Type 7 interneurons excited the D-phase neurons and inhibited the V-phase neurons; type 8 interneurons produced opposite effects. 3. Tetrodotoxin eliminated spike generation in all efferent neurons of the pedal ganglia, while in interneurons spike generation persisted. After blocking the spike discharges in all the efferent neurons, type 7 and 8 interneurons were capable of generating alternating activity. One may conclude that these interneurons determine the main features of the swim pattern, i.e., the rhythmic alternating activity of two (D and V) populations of neurons. 4. Both type 7 and type 8 interneurons were capable of endogenous rhythmic discharges with a period like that in normal swimming. This was demonstrated in experiments in which one of the two populations of “rhythmic” neurons (D or V) was inhibited by means of strong electrical hyperpolarization, as well as in experiments in which interaction between the two populations, mediated by chemical synapses, was blocked by Co2+ ions. 5. Type 7 and 8 interneurons were capable of “rebound”, i.e. they had a tendency to discharge after termination of inhibition. 6. V-phase neurons exerted not only inhibitory but also excitatory action upon D-phase neurons, the excitatory action being longer than the inhibitory one. 7. The main experimental findings correspond well to the model of rhythm generator consisting of two half centres possessing endogenous rhythmic activity. The half-centres exert strong, short duration inhibitory and weak long duration excitatory actions upon one another. The behaviour of such a model is considered and compared with that of the locomotor generator of Clione.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 70 (1988), S. 323-331 
    ISSN: 1432-1106
    Keywords: Mollusc ; Buccal ganglia ; Feeding rhythm generation ; Endogenous activity ; Isolated neurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Isolated buccal ganglia of Planorbis corneus are capable of generating a feeding rhythm. In the present work, “rhythmic” neurons of different groups (see Arshavsky et al. 1988a) have been extracted, by means of an intracellular microelectrode, from the buccal ganglia. (1) After extraction, efferent neurons of groups 3, 5, 7, 9 and most group 4 neurons generated repeated spikes at a frequency controlled by a polarizing current. Any periodic oscillations, similar to those during feeding rhythm generation, were absent in these isolated neurons. It is concluded, therefore, that these neurons are “followers”, that is, their rhythmic activity before extraction is determined by synaptic inputs from other neurons of the ganglia. (2) Isolated interneurons of groups 1 and 2 generated slow periodic oscillations similar to those observed in these neurons before their extraction. Subgroup 1e neurons generated smoothly growing depolarization accompanied by increasing spike activity; this depolarization was periodically interrupted by abrupt hyperpolarization, after which a new cycle started. Subgroup 1d neurons periodically generated short series of spikes. Group 2 neurons periodically generated a rectangular wave of depolarization with spike-like oscillations on its top. These results suggest that feeding rhythm generation in Planorbis is based on the endogenous rhythmic activity of group 1 and 2 neurons. (3) A pulse of hyperpolarizing current injected into an isolated neuron of subgroup 1e stopped the growth of depolarization in the neuron and reinitiated the process. This property as well as the character of the synaptic interactions of the interneurons (group 1 neurons excite those of group 2, while those of group 2 inhibit group 1 neurons; Arshavsky et al. 1988b) determine the alternating activity of groups 1 and 2.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 90 (1992), S. 479-488 
    ISSN: 1432-1106
    Keywords: Reticulospinal neurons ; Vestibular reactions ; Locomotion ; Lamprey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A method has been developed for recording the response of single neurons in the lamprey brainstem in vitro to natural stimulation of vestibular receptors. The brainstem dissected together with the intact vestibular apparatus could be rotated in space, in two perpendicular planes (transverse, the roll tilt, and sagittal, the pitch tilt), in one of them up to 360°, and in the other one up to ± 30°. The responses of single reticulospinal (RS) neurons, in all four reticular nuclei of the brainstem, to roll and pitch were recorded extracellularly and, with small inclinations (up to ±45°) also intracellularly. Two types of preparations were used, with and without the rostral part of the spinal cord. In the brainstem preparations, most RS neurons responded both to a definite brain orientation in space and to a change of the orientation (static and dynamic reactions). Responses to roll tilt were similar in all reticular nuclei: all cells were excited with roll tilt towards the contralateral side, this reaction was qualitatively preserved when the roll was performed in combination with different pitch inclinations. Responses to pitch tilt were less clearcut; some neurons were activated with noseup deflection while others responded to nose-down tilt. In preparations including the spinal cord, responses of RS neurons to roll and pitch tilt differed from those in the isolated brainstem in that they were much less specific and sfable. Roll and pitch tilts could trigger the spinal locomotor CPG, which, by sending “efference copy” signals back to the brainstem, produced modulation of RS neurons in relation to the locomotor rhythm.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 90 (1992), S. 499-507 
    ISSN: 1432-1106
    Keywords: Vestibular afferents ; Reticulospinal neurons ; Vestibular reactions ; Lamprey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Experiments were carried out on the in vitro preparation of the lamprey brainstem isolated together with the labyrinths. The brain orientation in space could be changed in steps of 45° by rotation (360°) around the longitudinal axis (roll) or the transverse axis (pitch). Vestibular afferents in the VIII nerve, or reticulospinal (RS) neurons, were recorded extracellularly during roll and pitch. Two main types of afferents could be distinguished. Presumed otolith afferents responded both to a change of position and to a maintained new position. These afferents were classified in several groups according to the position of their zone of sensitivity. For roll, the largest group had their maximal sensitivity around 90° tilt to the ipsilateral side, the next group in size responded at 180°, and only a few afferents were activated by contralateral roll. For pitch, there are groups responding with maximal sensitivity at 90° nose-up, 90° nose-down and at 180°. A minority of afferents were active when the brainstem was in a normal position, i.e. horizontal, with the dorsal side up. Another type of afferent responded only by a high-frequency burst to a change of brain orientation. They were classified as canal afferents in analogy with other species. All tested canal afferents responded to rotation towards ipsi-side down. Pitch tilt revealed two groups that responded to rotation towards either nose-up or nosedown. RS neurons from the anterior and middle rhombencephalic nuclei (ARRN and MRRN) were recorded before and after unilateral transection of the VIII nerve. For ARRN neurons, the inputs from the ipsi- and contralateral labyrinths were found to be almost equivalent, while for MRRN neurons these inputs contributed differently to the cells' response to tilt.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 95 (1993), S. 421-428 
    ISSN: 1432-1106
    Keywords: Reticulospinal neurons ; Visual input ; Vestibular reactions ; Visuo-vestibular interaction ; Lamprey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A body orientation with the dorsal side up is usually maintained by lampreys during locomotion. Of crucial importance for this is the vestibular-driven control system. A visual input can affect the body orientation: illumination of one eye during swimming evokes roll tilt towards the source of light. The aim of the present study was to investigate the interaction of visual and vestibular inputs in reticulospinal (RS) neurons of the brainstem. The RS system is the main descending system transmitting information from the brainstem to the spinal cord. The response of neurons in the middle rhombencephalic reticular nucleus to a unilateral nonpatterned optic input was investigated, as well as the influence of this input on the response of RS neurons to vestibular stimulation (roll tilt). Experiments were carried out on a brainstem preparation with intact labyrinths and, in some cases, intact eyes. Illumination of one eye or electrical stimulation of the optic nerve (10 Hz) resulted in an activation of RS neurons preferentially on the ipsilateral side of the brainstem. The same result was obtained after ablation of the optic tectum, demonstrating that there are asymmetrical visual projections to the lower brainstem which do not involve the tectum. Stimulation of the optic nerve strongly affected the vestibular response in RS neurons. As a rule RS neurons are silent at the normal (dorsal-side-up) orientation of the brainstem and become active with contralateral roll tilt. During continuous optic nerve stimulation, however, the RS neurons on the side of stimulation fire during normal orientation of the brainstem, and the response to contralateral roll tilt increases considerably in many neurons. The effects of the optic input in contralateral RS neurons were less consistent. Any asymmetry in the signals transmitted to the spinal cord by the two (left and right) sub-populations of RS neurons can be expected to evoke a correcting motor response aimed at turning the body around its longitudinal axis to a position at which the symmetry between left and right RS neurons is restored. Normally, the symmetry will occur when the dorsal side is upwards, but with a unilateral visual input it will occur instead at some degree of ipsilateral roll.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1106
    Keywords: Locomotion ; Central pattern generator ; Serotonin ; Modulation ; Pteropod mollusc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The locomotor activity in the marine mollusc Clione limacina has been found to be strongly excited by serotonergic mechanisms. In the present study putative serotonergic cerebropedal neurons were recorded simultaneously with pedal locomotor motoneurons and interneurons. Stimulation of serotonergic neurons produced acceleration of the locomotor rhythm and strengthening of motoneuron discharges. These effects were accompanied by depolarization of motoneurons, while depolarization of the generator interneurons was considerably lower (if it occurred at all). Effects of serotonin application on isolated locomotor and non-locomotor pedal neurons were studied. Serotonin (5×10-7 to 1×10-6 M) affected most pedal neurons. All locomotor neurons were excited by serotonin. This suggests that serotonergic command neurons exert direct influence on locomotor neurons. Effects of serotonin on nonlocomotor neurons were diverse, most neurons being inhibited by serotonin. Some effects of serotonin on locomotor neurons could not be reproduced by neuron depolarization. This suggests that, along with depolarization, serotonin modulates voltage-sensitive membrane properties of the neurons. As a result, serotonin promotes the endogenous rhythmical activity in neurons of the C. limacina locomotor central pattern generator.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1106
    Keywords: “Fictitious” scratch reflex ; Spinal cord ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary (1)Pinna stimulation evoked rhythmic oscillations in the spinal cord of the decerebrate curarized cat (“fictitious” scratch reflex). The role of different spinal segments in generation of these oscillations was studied. For this purpose, destruction of the grey matter of one or of several spinal segments was performed. Besides, different numbers of caudal segments were disconnected from the rest of the cord by cooling the lateral surface of the cord. ENGs of muscle nerves and activity of spinal neurons were recorded. (2) Different parts of the lumbosacral spinal cord, i.e. the L3 and L4 segments disconnected from the caudal part of the cord as well as the isolated L5 segment, are capable of generating rhythmic oscillations with a frequency (3–4 Hz) typical of the scratch reflex. (3) Rhythmic activity of the more caudal segments (L6-S1) usually appears only provided the rostral segments (L3–L5) generate rhythmic oscillations. However, when the dorsal surface of the L6-S1 segments is cooled, pinna stimulation evokes rhythmic activity in these segments earlier than in the L3–L5 segments. (4) The hypothesis is advanced that the L3–L5 segments are the “leading” ones, i.e., they determine the rhythm of activity in the whole spinal hindlimb centre.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 63 (1986), S. 106-112 
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Interneurons and efferent neurons ; Endogenous activity ; Isolated cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the pteropodial mollusc Clione limacina, the rhythmic locomotor wing movements are controlled by the pedal ganglia. The locomotor rhythm is generated by two groups of interneurons (groups 7 and 8) which drive efferent neurons. In the present paper, the activity of isolated neurons, which were extracted from the pedal ganglia by means of an intracellular electrode, is described. The following results have been obtained: 1. Isolated type 7 and 8 interneurons preserved the capability for generation of prolonged (100–200 ms) action potentials. The frequency of these spontaneous discharges was usually within the limit of locomotor frequencies (0.5–5 Hz). By de- or hyperpolarizing a cell, one could usually cover the whole range of locomotor frequencies. This finding demonstrates that the locomotor rhythm is indeed determined by the endogenous rhythmic activity of type 7 and 8 interneurons. 2. Type 1 and 2 efferent neurons, before isolation, could generate single spikes as well as high-frequency bursts of spikes. These two modes of activity were also observed after isolating the cells. Thus, the bursting activity of type 1 and 2 neurons, demonstrated during locomotion, is determined by their own properties. Type 3 and 4 efferent neurons generated only repeated single spikes both before and after isolation. 3. The activity of the isolated axons of type 1 and 2 neurons did not differ meaningfully from the activity of the whole cells. Furthermore, in the isolated pedal commissure, we found units whose activity (rhythmically repeating prolonged action potentials) resembled the activity of type 7 and 8 interneurons. These units seemed to be the axons of type 7 and 8 interneurons. Thus, different parts of the cell membrane (soma and axons) have similar electric properties.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...