GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-02-15
    Description: Increasing atmospheric mixing ratios of CO2 have already lowered surface ocean pH by 0.1 units compared to preindustrial values and pH is expected to decrease an additional 0.3 units by the end of this century. Pronounced physiological changes in some phytoplankton have been observed during previous CO2 perturbation experiments. Marine microorganisms are known to consume and produce climate-relevant organic gases. Concentrations of (CH3)2S (DMS) and CH2ClI were quantified during the Third Pelagic Ecosystem CO2 Enrichment Study. Positive feedbacks were observed between control mesocosms and those simulating future CO2. Dimethyl sulfide was 26% (±10%) greater than the controls in the 2x ambient CO2 treatments, and 18% (±10%) higher in the 3xCO2 mesocosms. For CH2ClI the 2xCO2 treatments were 46% (±4%) greater than the controls and the 3xCO2 mesocosms were 131% (±11%) higher. These processes may help contribute to the homeostasis of the planet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-06
    Description: The ocean's influence on volatile organic compounds (VOCs) in the atmosphere is poorly understood. This work characterises the oceanic emission and/or uptake of methanol, acetone, acetaldehyde, isoprene and dimethyl sulphide (DMS) as a function of photosynthetically active radiation (PAR) and a suite of biological parameters. The measurements were taken following a phytoplankton bloom, in May/June 2005 with a proton transfer reaction mass spectrometer (PTR-MS), from mesocosm enclosures anchored in the Raunefjord, Southern Norway. The net flux of methanol was always into the ocean, and was stronger at night. Isoprene and acetaldehyde were emitted from the ocean, correlating with light (ravcorr, isoprene=0.49; ravcorr, acetaldehyde=0.70) and phytoplankton abundance. DMS was also emitted to the air but did not correlate significantly with light (ravcorr, dms=0.01). Under conditions of high biological activity and a PAR of ~450 μmol photons m‑2 s‑1, acetone was emitted from the ocean, otherwise it was uptaken. The inter-VOC correlations were highest between the day time emission fluxes of acetone and acetaldehyde (rav=0.96), acetaldehyde and isoprene (rav=0.88) and acetone and isoprene (rav=0.85). The mean fluxes for methanol, acetone, acetaldehyde, isoprene and DMS were ‑0.26 ng m‑2 s‑1, 0.21 ng m‑2 s‑1, 0.23 ng m‑2 s‑1, 0.12 ng m‑2 s‑1 and 0.3 ng m‑2 s‑1, respectively. This work shows that compound specific PAR and biological dependency should be used for estimating the influence of the global ocean on atmospheric VOC budgets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-06
    Description: The potential impact of seawater acidification on the concentrations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP), and the activity of the enzyme DMSP-lyase was investigated during a pelagic ecosystem CO2 enrichment experiment (PeECE III) in spring 2005. Natural phytoplankton blooms were studied for 24 days under present, double and triple partial pressures of CO2 (pCO2; pH=8.3, 8.0, 7.8) in triplicate 25 m3 enclosures. The results indicate similar DMSP concentrations and DMSP-lyase activity (DLA) patterns for all treatments. Hence, DMSP and DLA do not seem to have been affected by the CO2 treatment. In contrast, DMS concentrations showed small but statistically significant differences in the temporal development of the low versus the high CO2 treatments. The low pCO2 enclosures had higher DMS concentrations during the first 10 days, after which the levels decreased earlier and more rapidly than in the other treatments. Integrated over the whole study period, DMS concentrations were not significantly different from those of the double and triple pCO2 treatments. Pigment and flow-cytometric data indicate that phytoplanktonic populations were generally similar between the treatments, suggesting a certain resilience of the marine ecosystem under study to the induced pH changes, which is reflected in DMSP and DLA. However, there were significant differences in bacterial community structure and the abundance of one group of viruses infecting nanoeukaryotic algae. The amount of DMS accumulated per total DMSP or chlorophyll-a differed significantly between the present and future scenarios, suggesting that the pathways for DMS production or bacterial DMS consumption were affected by seawater pH. A comparison with previous work (PeECE II) suggests that DMS concentrations do not respond consistently to pelagic ecosystem CO2 enrichment experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...