GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-04
    Description: Plankton is a massive and phylogenetically diverse group of thousands of prokaryotes, protists (unicellular eukaryotic organisms), and metazoans (multicellular eukaryotic organisms; Fig. 1). Plankton functional diversity is at the core of various ecological processes, including productivity, carbon cycling and sequestration, nutrient cycling (Falkowski 2012), interspecies interactions, and food web dynamics and structure (D'Alelio et al. 2016). Through these functions, plankton play a critical role in the health of the coastal and open ocean and provide essential ecosystem services. Yet, at present, our understanding of plankton dynamics is insufficient to project how climate change and other human-driven impacts affect the functional diversity of plankton. That limits our ability to predict how critical ecosystem services will change in the future and develop strategies to adapt to these changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Presented at Articulating the Cyberinfrastructure Needs of the Ocean Ecosystem Dynamics Community, Biological and Chemical Oceanographic Data Management Office, Woods Hole, MA, 7 – 8 Oct 2013
    Description: An EarthCube Water Column Domain End-User Workshop hosted by the Biological and Chemical Oceanographic Data Management Office (BCO-DMO) was held October 7-8, 2013 at Woods Hole Oceanographic Institution. The goal of the workshop was to articulate cyberinfrastructure needs of the ocean ecosystem dynamics community with particular focus on the challenges presented by multi-disciplinary marine ecosystem research that requires investigations in four dimensions. The workshop included 50 participants in the domain of oceanic ecosystem dynamics (established and early career researchers, teaching faculty, graduate students, postdocs, data and information managers and cyber-related researchers) to explore and document the community’s cyberinfrastructure needs from the users’ viewpoint.
    Description: NSF #1338892
    Keywords: Cyberinfrastructure ; Ocean Ecosystem Dynamics ; EarthCube
    Repository Name: Woods Hole Open Access Server
    Type: Other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benway, H. M., Lorenzoni, L., White, A. E., Fiedler, B., Levine, N. M., Nicholson, D. P., DeGrandpre, M. D., Sosik, H. M., Church, M. J., O'Brien, T. D., Leinen, M., Weller, R. A., Karl, D. M., Henson, S. A., & Letelier, R. M. Ocean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications. Frontiers in Marine Science, 6, (2019): 393, doi:10.3389/fmars.2019.00393.
    Description: Sustained ocean time series are critical for characterizing marine ecosystem shifts in a time of accelerating, and at times unpredictable, changes. They represent the only means to distinguish between natural and anthropogenic forcings, and are the best tools to explore causal links and implications for human communities that depend on ocean resources. Since the inception of sustained ocean observations, ocean time series have withstood many challenges, most prominently availability of uninterrupted funding and retention of trained personnel. This OceanObs’19 review article provides an overarching vision for sustained ocean time series observations for the next decade, focusing on the growing challenges of maintaining sustained ocean time series, including ship-based and autonomous coastal and open-ocean platforms, as well as remote sensing. In addition to increased diversification of funding sources to include the private sector, NGOs, and other groups, more effective engagement of stakeholders and other end-users will be critical to ensure the sustainability of ocean time series programs. Building a cohesive international time series network will require dedicated capacity to coordinate across observing programs and leverage existing infrastructure and platforms of opportunity. This review article outlines near-term observing priorities and technology needs; explores potential mechanisms to broaden ocean time series data applications and end-user communities; and describes current tools and future requirements for managing increasingly complex multi-platform data streams and developing synthesis products that support science and society. The actionable recommendations outlined herein ultimately form the basis for a robust, sustainable, fit-for-purpose time series network that will foster a predictive understanding of changing ocean systems for the benefit of society.
    Description: This work was led by HB in the Ocean Carbon and Biogeochemistry (OCB) Project Office, which is supported by the NSF OCE (1558412) and the NASA (NNX17AB17G).
    Keywords: Ocean time series ; Marine ecosystems ; Climate ; End-users ; Synthesis ; Sustained observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bucklin, A., Peijnenburg, K. T. C. A., Kosobokova, K. N., O'Brien, T. D., Blanco-Bercial, L., Cornils, A., Falkenhaug, T., Hopcroft, R. R., Hosia, A., Laakmann, S., Li, C., Martell, L., Questel, J. M., Wall-Palmer, D., Wang, M., Wiebe, P. H., & Weydmann-Zwolicka, A. Toward a global reference database of COI barcodes for marine zooplankton. Marine Biology, 168(6), (2021): 78, https://doi.org/10.1007/s00227-021-03887-y.
    Description: Characterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change.
    Description: Funding sources for authors of the review paper are described here: Scientific Committee on Oceanic Research (SCOR), and a grant to SCOR from the U.S. National Science Foundation (OCE-1840868). Netherlands Organization for Scientific Research (NWO) Vidi Grant/Award Number: 016.161.351 to K.T.C.A.P. European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 746186 (POSEIDoN) to D.W.P. The work of K.N.K. was performed in the framework of the state assignment of IO RAS (Theme No. 0128-2021-0007) and partially supported by Russian Foundation for Basic Research grants No. 18-05-60158 and No. 19-04-00955. The work of A.W.Z. was supported by a grant from HIDEA—Hidden diversity of the Arctic Ocean (No. 2017/27/B/NZ8/01056) from the National Science Centre, Poland, and a Fulbright Senior Award. The Norwegian Taxonomy Initiative of the Norwegian Biodiversity Information Centre provided funding for A.H. and L.M. (Project Nos. 70184233/HYPNO and 70184240/NORHYDRO), and for T.F. (Project Nos. 70184233/COPCLAD and 70184241/HYPCOP). The work of R.R.H. and J.M.Q. was supported by Census of Marine Life and NOAA Ocean Exploration and Research (NA05OAR4601079 and NA15OAR0110209). The work of S.L. was conducted at the Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB). HIFMB is a collaboration between the Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, and the Carl-von-Ossietzky University Oldenburg, initially funded by the Ministry for Science and Culture of Lower Saxony and the Volkswagen Foundation through the Niedersächsisches Vorab’ grant program (Grant No. ZN3285).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bucklin, A., Batta-Lona, P., Questel, J., Wiebe, P., Richardson, D., Copley, N., & O’Brien, T. COI metabarcoding of zooplankton species diversity for time-series monitoring of the NW Atlantic continental shelf. Frontiers in Marine Science, 9, (2022): 867893, https://doi.org/10.3389/fmars.2022.867893.
    Description: Marine zooplankton are rapid-responders and useful indicators of environmental variability and climate change impacts on pelagic ecosystems on time scales ranging from seasons to years to decades. The systematic complexity and taxonomic diversity of the zooplankton assemblage has presented significant challenges for routine morphological (microscopic) identification of species in samples collected during ecosystem monitoring and fisheries management surveys. Metabarcoding using the mitochondrial Cytochrome Oxidase I (COI) gene region has shown promise for detecting and identifying species of some – but not all – taxonomic groups in samples of marine zooplankton. This study examined species diversity of zooplankton on the Northwest Atlantic Continental Shelf using 27 samples collected in 2002-2012 from the Gulf of Maine, Georges Bank, and Mid-Atlantic Bight during Ecosystem Monitoring (EcoMon) Surveys by the NOAA NMFS Northeast Fisheries Science Center. COI metabarcodes were identified using the MetaZooGene Barcode Atlas and Database (https://metazoogene.org/MZGdb) specific to the North Atlantic Ocean. A total of 181 species across 23 taxonomic groups were detected, including a number of sibling and cryptic species that were not discriminated by morphological taxonomic analysis of EcoMon samples. In all, 67 species of 15 taxonomic groups had ≥ 50 COI sequences; 23 species had 〉1,000 COI sequences. Comparative analysis of molecular and morphological data showed significant correlations between COI sequence numbers and microscopic counts for 5 of 6 taxonomic groups and for 5 of 7 species with 〉1,000 COI sequences for which both types of data were available. Multivariate statistical analysis showed clustering of samples within each region based on both COI sequence numbers and EcoMon counts, although differences among the three regions were not statistically significant. The results demonstrate the power and potential of COI metabarcoding for identification of species of metazoan zooplankton in the context of ecosystem monitoring.
    Description: This publication resulted in part from support provided by the Scientific Committee on Oceanic Research (SCOR). Funds were also contributed by the U.S. National Science Foundation (Grant OCE-1840868) and by national SCOR committees.
    Keywords: zooplankton ; metabarcoding ; cytochrome oxidase I ; species diversity ; ecosystem monitoring ; Northwest Atlantic continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...