GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2021-02-08
    Beschreibung: Iron isotopes in ocean floor basalts (OFB) away from convergent margins comprising mid-ocean-ridge and ocean island lavas show significant variation of 〉0.4‰ (expressed in the delta notation δ57Fe relative to IRMM-014), but processes responsible for this variation remain elusive. Bond-valence theory predicts that valence states (Fe3+ vs. Fe2+) control Fe isotopes during partial melting and crystal fractionation along the liquid line of descent and thus contribute substantially to this variation. Memory of past melt extraction or metasomatic re-enrichment in the source of OFB may further add to the observed variability, but systematic investigations to elucidate the respective contributions of these effects have been lacking. Submarine ridges and rifts in the Lau back-arc basin offer a unique opportunity to compare Fe isotopes in OFB from different melting regimes and variably depleted mantle sources. New Fe isotope data is presented for submarine lavas from the Rochambeau Ridges (RR) and the Northwest Lau Spreading Centre (NWLSC), and is compared with published data from the Central Lau Spreading Centre (CLSC). In line with first principle calculations and observations from a range of natural systems, crystal fractionation is identified as the dominant, controlling process for elevating δ57Fe in the lavas with olivine tentatively identified as the key driver. To compensate for the effect of crystal fractionation, olivine is mathematically added towards calculated primitive melt compositions (δ57Feprim). For this, we used a constant Ol-melt isotope fractionation factor based on published equilibrium partition functions adapted to decreasing temperature in a cooling melt. The degree of calculated Fe isotope fractionation through olivine crystal fractionation (monitored as Δ57Fe = δ57Femeasured − δ57Feprim) is positively correlated with increasing S and decreasing Ni content in the cooling lavas, fortifying the validity of the approach. Primitive lavas from individual Lau spreading centres and ridges vary to 0.1‰ in δ57Feprim, similar to primitive open-ocean MORB. However, the entire spread in Fe isotope variability in the primitive melts remains at 0.3‰, which we propose to be the extent of isotope heterogeneity in Earth’s upper mantle, with few extreme exceptions. The largest variability in δ57Feprim is observed for RR intra-plate lavas, which have been associated with the Samoan mantle plume and melting in an edge-driven convection scenario. Low, mid-ocean ridge-like 87Sr/86Sr in RR lavas excludes significant influence of isotopically heavy Samoan EM2-type components. However, co-variations with rare earth element pattern in some RR intra-plate lavas indicate garnet plays a role in elevating δ57Feprim during deeper melting. Excluding these deep-seated melts uncovers systematically decreasing δ57Feprim coupled to the degree of mantle source depletion, as recorded in Lu/Hf and Sm/Nd, in the back-arc basin basalts. This, however, holds only true for a comparison between sources of individual ridges, whereas no co-variation is observed within ridge segment data. This suggests that a process other than source depletion and crystal fractionation further adds to Fe isotope variability in the order of 0.1‰ on scales of individual ridge segments. This either marks the degree of Fe isotope variability below ridge segments, or is caused by secondary processes, such as melt-wallrock interaction or RTX (recharge and crystal fractionation) magma chambers.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-09-04
    Beschreibung: Highlights • Synthesis of timescales of magmatic processes at spreading centres. • Compilation of drilled MORB glass compositions, chemical stratigraphy of the oceanic crust. • No chemical difference between MORB sampled from active ridges or by drilling. • Chemical variations on timescales 〈 1 ka reflect changes in melt recharge relative to fractionation. • Changes in the composition of melt entering crust occur over timescales of 10 to 100 ka. Abstract Oceanic crust is continuously created at mid-ocean ridges by decompression melting of the upper mantle as it upwells due to plate separation. Decades of research on active spreading ridges have led to a growing understanding of the complex magmatic, tectonic and hydrothermal processes linked to the formation of new oceanic igneous crust. However, less is known about the timescales of magmatic processes at mid-ocean ridges, including melting in and melt extraction from the mantle, fractional crystallisation, crustal assimilation and/or magma mixing. In this paper, we review the timescales of magmatic processes by integrating radiometric dating, chemical and petrological observations of mid-ocean ridge basalts (MORBs) and geophysical models. These different lines of evidence suggest that melt extraction and migration, and crystallisation and mixing processes occur over timescales of 1 to 10,000 a. High-resolution geochemical stratigraphic profiles of the oceanic crust using drill-core samples further show that at fast-spreading ridges, adjacent flow units may differ in age by only a few 100 a. We use existing chemical data and new major- and trace-element analyses of fresh MORB glasses from drill-cores in ancient Atlantic and Pacific crust, together with model stratigraphic ages to investigate how lava chemistry changes over 10 to 100 ka periods, the timescale of crustal accretion at spreading ridges which is recorded in the basalt stratigraphy in drilled sections through the oceanic crust. We show that drilled MORBs have compositions that are similar to those of young MORB glasses dredged from active spreading ridges (lavas that will eventually be preserved in the lowermost part of the extrusive section covered by younger flows), showing that the dredged samples are indeed representative of the bulk oceanic crust. Model stratigraphic ages calculated for individual flows in boreholes, together with the geochemical stratigraphy of the drilled sections, show that at fast-spreading ridges, magma compositions vary over 〈 100 to 1000 a, likely due to variations in the relative rates of crystallisation and melt recharge. However, on longer timescales of 10 to 100 ka, variations in the composition of the primitive melt feeding the ridge lead to chemical variations in the erupted lavas, likely as a function of thermal and/or chemical heterogeneity of the mantle source. The further understanding of these temporal variations in magma composition, especially at shorter timescales of less than a few centuries, is a promising area for future research.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-11-09
    Print ISSN: 0077-7757
    Thema: Geologie und Paläontologie
    Publiziert von Schweizerbart
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2015-05-09
    Beschreibung: Langmuir DOI: 10.1021/acs.langmuir.5b01060
    Print ISSN: 0743-7463
    Digitale ISSN: 1520-5827
    Thema: Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2016-04-29
    Beschreibung: A great potential of the use of aluminum nitride (AlN) to enhance the actuation of nanocrystalline diamond (NCD) microelectromechanical system disk resonators is revealed. A disk resonator with a unimorph (AlN/NCD) structure is fabricated by depositing a c-axis oriented AlN on a capacitive NCD disk resonator. The unimorph resonator is piezoelectrically actuated with flexural whispering gallery modes with a relatively large electrode gap spacing, i.e., the spacing which is greater than 1  μ m, although this is not possible for the capacitive NCD disk resonator. This result is explained by a finite element method simulation where the piezoelectric actuation turns out to be more effective than the capacitive actuation when the electrode gap spacing is 〉0.8  μ m. The simulation also shows that the electrode gap spacing required for the capacitive actuation to be more effective than the piezoelectric actuation exponentially decreases when the resonator dimension is scaled down for higher frequency operations. Our study indicates that the use of AlN is promising to decrease impedance levels of NCD disk resonators especially for their higher frequency operations.
    Print ISSN: 0003-6951
    Digitale ISSN: 1077-3118
    Thema: Physik
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    In:  EPIC3AGU Fall Meeting 2012, San Francisco, CA, USA, 2012-12-03-2012-12-07
    Publikationsdatum: 2019-07-16
    Beschreibung: Discovering if hotspots observed on the Earth’s surface are explained by underlying plumes rising from the deep mantle or by a shallow plate-cracking mechanism continues to be an essential goal in Earth Science. Key evidence underpinning the mantle plume concept is the existence of narrow, age-progressive volcanic trails recording past plate motion relative to surface hotspots and their deep causal plumes. Using the icebreaker RV Polarstern we sampled scattered hotspot trails on the 2,000 km-wide southeast Atlantic hotspot swell, which projects down to one of the Earth’s two largest and deepest regions of slower-than-average seismic wave speed – the Africa Low Shear Wave Velocity Province – caused by a massive thermo-chemical ‘pile’ on the core-mantle boundary. We showed recently using 40Ar/39Ar isotopic ages – and crustal structure and seafloor ages – that these hotspot trails are age progressive and formed synchronously across the swell, consistent with African plate motion over plumes rising from the stable edge of a Low Shear Wave Velocity Province (LLSVP) (O’Connor et al., 2012). We showed furthermore that hotspot trails formed initially only at spreading boundaries at the outer edges of the swell until roughly 44 million years ago, when they started forming across the swell, far from spreading boundaries in lithosphere that was sufficiently weak (young) for plume melts to reach the surface. We concluded that if plume melts formed synchronous age progressive hotspot trails whenever they could penetrate the lithosphere, then hotspot trails in the South Atlantic are controlled by the interplay between deep plumes and the shallow motion and structure of the African plate. Our observations reveal a plate tectonic-controlled cycle from the creation of deep thermo-chemical piles (LLSVP) and initiation of deep mantle plumes at the CMB to the shallow formation of the resulting hotspot trails. Moreover, suppression of plume melts from venting to the plate surface for tens of millions of years implies that the plumes responsible for the southeast Atlantic hotspot swell and hotspot trails transported more material and heat from the core mantle boundary than measured by hotspot volcanism.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 9 (2018): 3500, doi:10.1038/s41467-018-05804-2.
    Beschreibung: Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle. Measurements of sulfur (S) valence state in sub-arc mantle peridotites identify sulfate, both as crystalline anhydrite (CaSO4) and dissolved SO42− in spinel-hosted glass (formerly melt) inclusions. Copper-rich sulfide precipitates in the inclusions and increased Fe3+/∑Fe in spinel record a S6+–Fe2+ redox coupling during melt percolation through the sub-arc mantle. Sulfate-rich glass inclusions exhibit high U/Th, Pb/Ce, Sr/Nd and δ34S (+ 7 to + 11‰), indicating the involvement of dehydration products of serpentinised slab rocks in their parental melt sources. These observations provide a link between liberated slab components and oxidised arc magmas.
    Beschreibung: We acknowledge financial support by the Australian Research Council (DE120100513 and DP120104240) and the ESRF for beam time (EC1061 and ES238).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Richter, M., Nebel, O., Schwindinger, M., Nebel-Jacobsen, Y., & Dick, H. J. B. Competing effects of spreading rate, crystal fractionation and source variability on Fe isotope systematics in mid-ocean ridge lavas. Scientific Reports, 11(1), (2021): 4123, https://doi.org/10.1038/s41598-021-83387-7.
    Beschreibung: Two-thirds of the Earth is covered by mid-ocean ridge basalts, which form along a network of divergent plate margins. Basalts along these margins display a chemical diversity, which is consequent to a complex interplay of partial mantle melting in the upper mantle and magmatic differentiation processes in lower crustal levels. Igneous differentiation (crystal fractionation, partial melting) and source heterogeneity, in general, are key drivers creating variable chemistry in mid-ocean ridge basalts. This variability is reflected in iron isotope systematics (expressed as δ57Fe), showing a total range of 0.2 ‰ from δ57Fe =  + 0.05 to + 0.25 ‰. Respective contributions of source heterogeneity and magma differentiation leading to this diversity, however, remain elusive. This study investigates the iron isotope systematics in basalts from the ultraslow spreading Gakkel Ridge in the Arctic Ocean and compares them to existing data from the fast spreading East Pacific Rise ridge. Results indicate that Gakkel lavas are driven to heavier iron isotope compositions through partial melting processes, whereas effects of igneous differentiation are minor. This is in stark contrast to fast spreading ridges showing reversed effects of near negligible partial melting effects followed by large isotope fractionation along the liquid line of descent. Gakkel lavas further reveal mantle heterogeneity that is superimposed on the igneous differentiation effects, showing that upper mantle Fe isotope heterogeneity can be transmitted into erupting basalts in the absence of homogenisation processes in sub-oceanic magma chambers.
    Beschreibung: This work was supported by an ARC grant FT140101062 to O.N. H.J.B.D was supported by the NSF grants PLR 9912162, PLR 0327591, OCE 0930487 and OCE 1434452.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Richter, M., Nebel, O., Maas, R., Mather, B., Nebel-Jacobsen, Y., Capitanio, F. A., Dick, H. J. B., & Cawood, P. A. An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances, 6(44), (2020): eabb4340, doi:10.1126/sciadv.abb4340.
    Beschreibung: Earth’s upper mantle, as sampled by mid-ocean ridge basalts (MORBs) at oceanic spreading centers, has developed chemical and isotopic heterogeneity over billions of years through focused melt extraction and re-enrichment by recycled crustal components. Chemical and isotopic heterogeneity of MORB is dwarfed by the large compositional spectrum of lavas at convergent margins, identifying subduction zones as the major site for crustal recycling into and modification of the mantle. The fate of subduction-modified mantle and if this heterogeneity transmits into MORB chemistry remains elusive. Here, we investigate the origin of upper mantle chemical heterogeneity underneath the Western Gakkel Ridge region in the Arctic Ocean through MORB geochemistry and tectonic plate reconstruction. We find that seafloor lavas from the Western Gakkel Ridge region mirror geochemical signatures of an Early Cretaceous, paleo-subduction zone, and conclude that the upper mantle can preserve a long-lived, stationary geochemical memory of past geodynamic processes.
    Beschreibung: O.N. was supported by the Australian Research Council (grant FT140101062). P.A.C. was supported by the Australian Research Council (grant FL160100168). H.J.B.D. was supported by the NSF (grants PLR 9912162, PLR 0327591, OCE 0930487, and OCE 1434452). M.R. was supported by a graduate scholarship of Monash University and the SEAE.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...