GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: One of the aims of the United Nations (UN) negotiations on the conservation and sustainable use of marine biodiversity in areas beyond national jurisdiction (ABNJ) is to develop a legal process for the establishment of area-based management tools, including marine protected areas, in ABNJ. Here we use a conservation planning algorithm to integrate 55 global data layers on ABNJ species diversity, habitat heterogeneity, benthic features, productivity, and fishing as a means for highlighting priority regions in ABNJ to be considered for spatial protection. We also include information on forecasted species distributions under climate change. We found that parameterizing the planning algorithm to protect at least 30% of these key ABNJ conservation features, while avoiding areas of high fishing effort, yielded a solution that highlights 52,545,634 km2 (23.7%) of ABNJ as high priority regions for protection. Instructing the planning model to avoid ABNJ areas with high fishing effort resulted in relatively minor shifts in the planning solution, when compared to a separate model that did not consider fishing effort. Integrating information on climate change had a similarly minor influence on the planning solution, suggesting that climate-informed ABNJ protected areas may be able to protect biodiversity now and in the future. This globally standardized, data-driven process for identifying priority ABNJ regions for protection serves as a valuable complement to other expert-driven processes underway to highlight ecologically or biologically significant ABNJ regions. Both the outputs and methods exhibited in this analysis can additively inform UN decision-making concerning establishment of ABNJ protected areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: The diversity of life in the sea is critical to the health of ocean ecosystems that support living resources and therefore essential to the economic, nutritional, recreational, and health needs of billions of people. Yet there is evidence that the biodiversity of many marine habitats is being altered in response to a changing climate and human activity. Understanding this change, and forecasting where changes are likely to occur, requires monitoring of organism diversity, distribution, abundance, and health. It requires a minimum of measurements including productivity and ecosystem function, species composition, allelic diversity, and genetic expression. These observations need to be complemented with metrics of environmental change and socio-economic drivers. However, existing global ocean observing infrastructure and programs often do not explicitly consider observations of marine biodiversity and associated processes. Much effort has focused on physical, chemical and some biogeochemical measurements. Broad partnerships, shared approaches, and best practices are now being organized to implement an integrated observing system that serves information to resource managers and decision-makers, scientists and educators, from local to global scales. This integrated observing system of ocean life is now possible due to recent developments among satellite, airborne, and in situ sensors in conjunction with increases in information system capability and capacity, along with an improved understanding of marine processes represented in new physical, biogeochemical, and biological models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-26
    Description: The diversity of life in the sea is critical to the health of ocean ecosystems that support living resources and therefore essential to the economic, nutritional, recreational, and health needs of billions of people. Yet there is evidence that the biodiversity of many marine habitats is being altered in response to a changing climate and human activity. Understanding this change, and forecasting where changes are likely to occur, requires monitoring of organism diversity, distribution, abundance, and health. It requires a minimum of measurements including productivity and ecosystem function, species composition, allelic diversity, and genetic expression. These observations need to be complemented with metrics of environmental change and socio-economic drivers. However, existing global ocean observing infrastructure and programs often do not explicitly consider observations of marine biodiversity and associated processes. Much effort has focused on physical, chemical and some biogeochemical measurements. Broad partnerships, shared approaches, and best practices are now being organized to implement an integrated observing system that serves information to resource managers and decision-makers, scientists and educators, from local to global scales. This integrated observing system of ocean life is now possible due to recent developments among satellite, airborne, and in situ sensors in conjunction with increases in information system capability and capacity, along with an improved understanding of marine processes represented in new physical, biogeochemical, and biological models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Applications 28 (2018): 749-760, doi: 10.1002/eap.1682.
    Description: The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration 〈2%, relative calibration of 0.2%, polarization sensitivity 〈1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.
    Description: National Center for Ecological Analysis and Synthesis (NCEAS); National Aeronautics and Space Administration (NASA) Grant Numbers: NNX16AQ34G, NNX14AR62A; National Ocean Partnership Program; NOAA US Integrated Ocean Observing System/IOOS Program Office; Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM) Grant Number: MC15AC00006
    Keywords: Aquatic ; Coastal zone ; Ecology ; Essentail biodiversity variables ; H4 imaging ; Hyperspectral ; Remote sensing ; Vegetation ; Wetland
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2009. This article is posted here by permission of NRC Research Press for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 66 (2009): 1399-1403, doi:10.1139/F09-115.
    Description: Despite many years of study and protection, the North Atlantic right whale (Eubalaena glacialis) remains on the brink of extinction. There is a crucial gap in our understanding of their habitat use in the migratory corridor along the eastern seaboard of the United States. Here, we characterize habitat suitability in migrating right whales in relation to depth, distance to shore, and the recently enacted ship speed regulations near major ports. We find that the range of suitable habitat exceeds previous estimates and that, as compared with the enacted 20 nautical mile buffer, the originally proposed 30 nautical mile buffer would protect more habitat for this critically endangered species.
    Description: This work was supported in part by SERDP/DoD grant W912HQ-04-C-0011 to A.J. Read and P.N. Halpin as well as a James B. Duke Fellowship and a Harvey L. Smith Dissertation Year Fellowship to R.S. Schick.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: This is an open-access article, free of all copyright. The definitive version was published in PLoS One 9 (2014): e98995, doi:10.1371/journal.pone.0098995.
    Description: Management of marine ecosystems increasingly demands comprehensive and quantitative assessments of ocean health, but lacks a tool to do so. We applied the recently developed Ocean Health Index to assess ocean health in the relatively data-rich US west coast region. The overall region scored 71 out of 100, with sub-regions scoring from 65 (Washington) to 74 (Oregon). Highest scoring goals included tourism and recreation (99) and clean waters (87), while the lowest scoring goals were sense of place (48) and artisanal fishing opportunities (57). Surprisingly, even in this well-studied area data limitations precluded robust assessments of past trends in overall ocean health. Nonetheless, retrospective calculation of current status showed that many goals have declined, by up to 20%. In contrast, near-term future scores were on average 6% greater than current status across all goals and sub-regions. Application of hypothetical but realistic management scenarios illustrate how the Index can be used to predict and understand the tradeoffs among goals and consequences for overall ocean health. We illustrate and discuss how this index can be used to vet underlying assumptions and decisions with local stakeholders and decision-makers so that scores reflect regional knowledge, priorities and values. We also highlight the importance of ongoing and future monitoring that will provide robust data relevant to ocean health assessment.
    Description: Beau and Heather Wrigley generously provided the founding grant. Additional financial and in-kind support was provided by the Pacific Life Foundation, Thomas W. Haas Fund of the New Hampshire Charitable Foundation, the Oak Foundation, Akiko Shiraki Dynner Fund for Ocean Exploration and Conservation, Darden Restaurants Inc. Foundation, Conservation International, New England Aquarium, National Geographic, and the University of California Santa Barbara's National Center for Ecological Analysis and Synthesis, which supported the Ecosystem Health Working Group as part of the Science of Ecosystem-Based Management project funded by the David and Lucile Packard Foundation. Individual authors also acknowledge support from the U.S. National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...