GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-04-23
    Beschreibung: The subtropical oceans are home to the largest phytoplankton biome on the planet. Yet, little is known about potential impacts of ocean acidification (OA) on phytoplankton community composition in the vast oligotrophic ecosystems of the subtropical gyres. To address this question, we conducted an experiment with 9 in situ mesocosms (~35 m3) off the coast of Gran Canaria in the eastern subtropical North Atlantic over a period of 9 weeks. By establishing a gradient of pCO2 ranging from ~350 to 1025 µatm, we simulated carbonate chemistry conditions as projected until the end of the 21st century. Furthermore, we injected nutrient-rich deep water into the mesocosms halfway through the experiment to simulate a natural upwelling event, which regularly leads to patchy nutrient fertilization in the study region. The temporal developments of major taxonomic groups of phytoplankton were analyzed by flow cytometry, pigment composition and microscopy. We observed distinct shifts in phytoplankton community structure in response to high CO2, with markedly different patterns depending on nutrient status of the system. Phytoplankton biomass during the oligotrophic phase was dominated by picocyanobacteria (Synechococcus), which constituted 60-80% of biomass and displayed significantly higher cell abundances at elevated pCO2. The addition of deep water triggered a substantial bloom of large, chain-forming diatoms (mainly Guinardia striata and Leptocylindrus danicus) that dominated the phytoplankton community during the bloom phase (70-80% of biomass) and until the end of the experiment. A CO2 effect on bulk diatom biomass became apparent only in the highest CO2 treatments (〉800 µatm), displaying elevated concentrations especially in the stationary phase after nutrient depletion. Notably, these responses were tightly linked to distinct interspecific shifts within the diatom assemblage, particularly favoring the largest species Guinardia striata. Other taxonomic groups contributed less to total phytoplankton biomass, but also displayed distinct responses to OA treatments. For instance, higher CO2 favored the occurrence of prymnesiophyceae (Phaeocystis globosa) and dictyochophyceae, whereas dinoflagellates were negatively affected by increasing CO2. Altogether, our findings revealed considerable shifts in species composition in response to elevated CO2 and indicated that phytoplankton communities in the subtropical oligotrophic oceans might be profoundly altered by ocean acidification.
    Materialart: Article , PeerReviewed
    Format: text
    Format: other
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-04-23
    Beschreibung: The subtropical oceans are home to one of the largest ecosystems on Earth, contributing to nearly one third of global oceanic primary production. Ocean warming leads to enhanced stratification in the oligotrophic ocean but also intensification in cross-shore wind gradients and thus in eddy kinetic energy across eastern boundary regions of the subtropical gyres. Phytoplankton thriving in a future warmer oligotrophic subtropical ocean with enhanced CO2 levels could therefore be patchily fertilized by increased mesoscale and submesoscale variability inducing nutrient pumping into the surface ocean. Under this premise, we have tested the response of three size classes (0.2-2, 2-20, and 〉 20 μm) of subtropical phytoplankton communities in terms of primary production, chlorophyll and cell biomass, to increasing CO2 concentrations and nutrient fertilization during an in situ mesocosm experiment in oligotrophic waters offof the island of Gran Canaria. We found no significant CO2-related effect on primary production and biomass under oligotrophic conditions (phase I). In contrast, primary production, chlorophyll and biomass displayed a significant and pronounced increase under elevated CO2 conditions in all groups after nutrient fertilization, both during the bloom (phase II) and post-bloom (phase III) conditions. Although the relative increase of primary production in picophytoplankton (250%) was 2.5 higher than in microphytoplankton (100%) after nutrient fertilization, comparing the high and low CO2 treatments, microphytoplankton dominated in terms of biomass, contributing 〉 57% to the total. These results contrast with similar studies conducted in temperate and cold waters, where consistently small phytoplankton benefitted after nutrient additions at high CO2, pointing to different CO2-sensitivities across plankton communities and ecosystem types in the ocean.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-02-08
    Beschreibung: The enzymatic electron transport system (ETS) assay is frequently used as a proxy of respiratory activity in planktonic communities. It is thought to estimate the maximum overall activity of the enzymes associated with the respiratory ETS systems in both eukaryotic and prokaryotic organisms. Thus, in order to derive actual respiration rates (R) from ETS it is necessary to determine empirical R/ETS conversion algorithms. In this study we explore the temporal development of R and ETS activity in natural plankton communities (from bacteria to large phytoplankton) enclosed in mesocosms, treated with different CO2 concentrations. The experiment lasted 30 days, during which abrupt changes in community structure and biomass occurred through a sharp transition from oligotrophy (phase I) to highly eutrophic conditions (phase II) after nutrient-induced fertilization (day 18). R and ETS did not show any response to CO2 under oligotrophic conditions, but R increased significantly more in the two high CO2 mesocosms after fertilization, coinciding with a sharp rise in large phytoplankton (mostly diatoms). R and ETS were significantly correlated only during the eutrophic phase. The R/ETS ranged more than threefold in magnitude during the experiment, with phase-averaged values significantly higher under oligotrophic conditions (0.7-1.1) than after nutrient fertilization (0.5-0.7). We did not find any significant relationship between R/ETS and community structure or biomass, although R correlated significantly with total biomass after fertilization in the four mesocosms. Multiple stepwise regression models show that large phytoplankton explains most of the variance in R during phases I (86%) and II (53%) and of ETS (86%) during phase II, while picophytoplankton contributes up to 73% to explain the variance in the ETS model during phase I. Our results suggest that R/ETS may be too variable in the ocean as to apply constant values to different communities living under contrasting environmental conditions. Controlled experiments with natural communities, like the present one, would help to constrain the range of variability of the R/ETS ratio, and to understand the factors driving it.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-02-07
    Beschreibung: Climate change is expected to alter the intensity and frequency of upwelling in high productive coastal regions, thus impacting nutrient fluxes, primary productivity and consequently carbon cycling. However, it is unknown how these changes will impact the planktonic (phytoplankton and bacteria) community structure, which affects community respiration (CR) and hence the carbon available for sequestration or transfer to upper trophic levels. Here we present results from a 37-day mesocosm experiment where we examined the response of CR to nutrient additions by simulating upwelling events at different intensities (low, medium, high and extreme) and modes (singular and recurring additions). We also analysed the potential contribution of different plankton size classes and functional groups to CR. The trend in accumulated CR with respect to nutrient fertilisation (total nitrogen added during the experiment) was linear in the two modes. Microplankton (mostly diatoms) and nanoplankton (small flagellates) dominated under extreme upwelling intensities and high CR in both singular and recurring upwelling modes, explaining 〉65% of the observed variability in CR. In contrast, prokaryotic picoplankton (heterotrophic bacteria and autotrophic cyanobacteria) explained 〈43% of the variance in CR under the rest of the upwelling intensities and modes tested. Changes in planktonic community structure, while modulating CR variability, would regulate the metabolic balance of the ecosystem, shifting it towards net-heterotrophy when the community is dominated by small heterotrophs and to net-autotrophy when large autotrophs prevail; although depending on the mode in which nutrients are supplied to the system. This shift in the dominance of planktonic organism will hence affect not only CR but also carbon sequestration in upwelling regions
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 115 (2016): 63–73, doi:10.1016/j.dsr.2016.05.010.
    Beschreibung: Remineralization of organic matter in the mesopelagic zone (ca. 150–700 m) is a key controlling factor of carbon export to the deep ocean. By using a tracer conservation model applied to climatological data of oxygen, dissolved inorganic carbon (DIC) and nitrate, we computed mesopelagic respiration at the ESTOC (European Station for Time- Series in the Ocean, Canary Islands) site, located in the Eastern boundary region of the North Atlantic subtropical gyre. The tracer conservation model included vertical Ekman advection, geostrophic horizontal transport and vertical diffusion, and the biological remineralization terms were diagnosed by assuming steady state. Three different approaches were used to compute reference velocities used for the calculation of geostrophic velocities and flux divergences: a no-motion level at 3000 m, surface geostrophic velocities computed from the averaged absolute dynamic topography field, and surface velocities optimized from the temperature model. Mesopelagic respiration rates computed from the model were 2.8–8.9molO2 m2 y=1, 2.0–3.1mol Cm2 y=1 and 0.6–1.0molNm2 y=1, consistent with remineralization processes occurring close to Redfield stoichiometry. Model estimates were in close agreement with respiratory activity, derived from electron transport system (ETS) measurements collected in the same region at the end of the winter bloom period (3.61 ± 0.48molO2 m=2 y=1). According to ETS estimates, 50% of the respiration in the upper 1000 m took place below 150 m. Model results showed that oxygen, DIC and nitrate budgets were dominated by lateral advection, pointing to horizontal transport as the main source of organic carbon fuelling the heterotrophic respiration activity in this region.
    Beschreibung: Funding for this study was provided by the Xunta de Galicia under the research project VARITROP (09MDS001312PR, PI B. Mouriño-Carballido) and by the Ministerio de Educación y Cultura under the research project MESOPELAGIC (MAR97-1036, PI S. Hernández-León). B. Fernández-Castro acknowledges the receipt of FPU grant from the Spanish government (AP2010-5594).
    Beschreibung: 2017-05-26
    Schlagwort(e): Mesopelagic respiration ; Tracer conservation model ; Horizontal advection ; North Atlantic subtropical gyre ; ESTOC
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...