GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2024-03-04
    Description: The short sediment core EMB201/7-4 retrieved from the East Gotland Basin, central Baltic Sea, is explored here as a candidate to host the stratigraphical basis for the Anthropocene series and its equivalent Anthropocene epoch, still to be formalized in the Geological Time Scale. The core has been accurately dated back to 1840 CE using a well-established event stratigraphy approach. A pronounced and significant change occurs at 26.5 cm (dated 1956 ± 4 CE) for a range of geochemical markers including 239+240Pu, 241Am, fly-ash particles, DDT (organochlorine insecticide), total organic carbon, and bulk organic carbon stable isotopes. This stratigraphic level, which corresponds to a change in both lithology and sediment colour related to early anthropogenic-triggered eutrophication of the central Baltic Sea, is proposed as a Global Boundary Stratotype Section and Point for the Anthropocene series.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Highlights: • We present a T5 record of the Pb isotope composition Labrador Sea seawater. • These data can be used to track Laurentide Ice Sheet (LIS) extent over Hudson Bay. • LIS retreat during T5 occurred over longer timescales than that for T2 and T1. • LIS deglaciation played important role in protracted nature of T5 sea-level rise. • Ice retreat during T1 may not be applicable template for older terminations in GIA modelling. Termination (T) 5, ∼424 ka, involved the biggest deglaciation of land-ice mass during the Quaternary. Warming and ice-sheet retreat during T5 led to an exceptionally long period of interglacial warmth known as Marine Isotope Stage (MIS) 11, ∼424–395 ka. A detailed understanding of the history of continental ice-sheet decay during T5 is required to disentangle regional contributions of ice-sheet retreat to sea-level rise (that range between ∼1 and 13 m above present day) and to correct it for glacio-isostatic adjustments (GIA). Yet little is known about the timing and magnitude of retreat during this time of the volumetrically most important continental ice sheet in the Northern Hemisphere, the Laurentide Ice Sheet (LIS). Here we present new authigenic Fe-Mn oxyhydroxide-derived high-resolution records of Pb isotope data and associated rare earth element profiles for samples spanning T5 from Labrador Sea IODP Site U1302/3. These records feature astronomically-paced radiogenic Pb isotope excursions that track increases in chemical weathering of North American bedrock and freshwater routing to the Labrador Sea via Hudson Straits associated with LIS retreat. Our records show that LIS retreat during T5 began 429. 2 ± 7.9 ka (2σ) and likely occurred over a longer timescale (by ∼10 to 5 kyr) than that observed for T2 and T1. They also show that Hudson Bay Ice Saddle collapse (and therefore LIS break-up) occurred ∼419 ± 4.7 ka (2σ), around the same time as best estimates of southern Greenland deglaciation, but ∼12 kyr before LIS deglaciation and the sea-level high-stand associated with the latter half of MIS 11 likely occurred. Our findings therefore highlight that ice-mass loss on North America likely played an important role in the seemingly protracted nature of T5 sea-level rise. A comparison of the deglaciation histories of the LIS and the southern Greenland Ice Sheet during T5, T2 and T1 also demonstrates that the well-constrained history of regional ice-sheet retreat during T1 is not always applicable as a template for older late Pleistocene terminations in GIA modelling.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • We present LGC record of the Pb isotope composition Labrador Sea seawater. • These data can be used to track Laurentide Ice Sheet extent over Hudson Bay. • LIS retreat during the PGM was relatively fast compared to the LGM • The LIS first advanced significantly over Hudson Bay during MIS 4. • Our record does not support significant LIS retreat during MIS 3. Understanding the history of continental ice-sheet growth on North America, and in particular that of the Laurentide Ice Sheet (LIS), is important for palaeoclimate and sea-level reconstructions. Information on ice-sheet extent pre-dating the Last Glacial Maximum (LGM) is heavily reliant, though, on the outputs of numerical models underpinned by scant geological data. Important aspects of LIS history that remain unresolved include the timing of its collapse during Termination 2, the first time that it expanded significantly during the Last Glacial Cycle, and whether its volume was significantly reduced during marine isotope stage (MIS) 3. To address these issues and more, we present authigenic iron-manganese (Fe–Mn) oxyhydroxide-derived high-resolution records of Pb isotope data and associated rare earth element profiles for samples spanning the past ∼130 kyr from northwest North Atlantic Labrador Sea, IODP Site U1302/3. We use these new data to track chemical weathering intensity and solute flux to the Labrador Sea associated with LIS extent on the adjacent highly radiogenic (high Pb isotope composition) North American Superior Province (SP) craton since the Penultimate Glacial Maximum (PGM). Our new records show that relatively high (radiogenic) values characterise warm marine isotope stages (MIS) 5, 3 and 1 and the lowest (most unradiogenic) values occurred during cold stages MIS 6, 4 and 2. The radiogenic Pb isotope excursion associated with Termination 2 is short-lived relative to the one documented for Termination 1, suggesting that LIS retreat during the PGM was relatively fast compared to the LGM and that its collapse during the last interglacial occurred ∼125 ka. Highly radiogenic inputs to the Labrador Sea during MIS 5d-a, ∼116–71 ka, most likely reflect a spin-up in Labrador Current vigour, incipient glaciation and renewed glacial erosion of high grounds of the eastern SP craton by localised wet-based ice-caps. A large decrease in Pb isotope values towards unradiogenic LGM-like compositions between ∼75–65 ka across the MIS 5/4 transition likely reflects a slow-down in Labrador Current vigour, an increase in subaerial deposition of aeolian dust and a significant advance of the LIS across Hudson Bay caused a strong reduction or even abandonment of Pb sourcing from the SP. The relatively radiogenic Pb isotope composition of bottom-waters bathing our study site during MIS 3, 57–29 ka, is unlikely to support a recently proposed major reduction in LIS extent for this time. Instead, we argue these values are better explained by southern Greenland Ice Sheet retreat, increased chemical weathering of the Ketelidian Mobile Belt and subsequent Pb runoff from Greenland.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...