GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 385 (1997), S. 618-621 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The ocean fluctuates on a wide range of spatial and temporal scales4. The measured potential-energy spectrum of the circulation is mostly 'red', that is, the energy density increases with increasing spatial and temporal scales, but with a marked peak at the annual cycle. However, the kinetic-energy ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: The Sea surface KInematics Multiscale monitoring (SKIM) satellite mission is designed to explore ocean surface current and waves. This includes tropical currents, notably the unknown patterns of divergence and their impact on the ocean heat budget near the Equator, monitoring of the emerging Arctic up to 82.5$(\circ)$N. SKIM will also make unprecedented direct measurements of strong currents, from boundary currents to the Antarctic circumpolar current, and their interaction with ocean waves with expected impacts on air-sea fluxes and extreme waves. For the first time, SKIM will directly measure the ocean surface current vector from space. The main instrument on SKIM is a Ka-band conically scanning, multi-beam Doppler radar altimeter/wave scatterometer that includes a state-of-the-art nadir beam comparable to the Poseidon-4 instrument on Sentinel 6. The well proven Doppler pulse-pair technique will give a surface drift velocity representative of the top two meters of the ocean, after subtracting a large wave-induced contribution. Horizontal velocity components will be obtained with an accuracy better than 7 cm/s for horizontal wavelengths larger than 80~km and time resolutions larger than 15 days, with a mean revisit time of 4 days for of 99\% of the global oceans. This will provide unique and innovative measurements that will further our understanding of the transports in the upper ocean layer, permanently distributing heat, carbon, plankton, and plastics. SKIM will also benefit from co-located measurements of water vapor, rain rate, sea ice concentration, and wind vectors provided by the European operational satellite MetOp-SG(B), allowing many joint analyses. SKIM is one of the two candidate satellite missions under development for ESA Earth Explorer 9. The other candidate is the Far infrared Radiation Understanding and Monitoring (FORUM). The final selection will be announced by September 2019, for a launch in the coming decade.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC3FAMOS Workshop, Woods Hole Oceanographic Institution, 2016-11-02-2016-11-04
    Publication Date: 2016-11-14
    Description: Many climate models use a rheology of the viscous-plastic type to simulate sea ice dynamics. With this rheology, large scale velocity and thickness fields can be realistically simulated, but the representation of small scale deformation rates and Linear Kinematic Features (LKF) is thought to be inadequate. However, at high resolution (〈 5 km) the rheology starts to produce lines of localised deformation rates. In this study we use results from a 1-km Pan-Arctic model to investigate the influence of these deformation features on the scaling properties of sea ice deformation. For evaluation the EGPS satellite data set of small-scale sea ice kinematics for the Central Arctic (successor of RGPS) is used. The modelled sea ice deformation shows multi-fractal spatial scaling and, in this sense, agrees with the satellite data. In addition, the temporal coupling of the spatial scaling is reproduced as well. Furthermore, we examine the regional and seasonal variations of spatial scaling properties and its dependence on the ice condition, i.e. sea ice concentration and thickness, which are in agreement with previous RGPS studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-27
    Description: Many climate models use a rheology of the viscous-plastic type to simulate sea ice dynamics. With this rheology, large scale velocity and thickness fields can be realistically simulated, but the representation of small scale deformation rates and Linear Kinematic Features (LKF) is thought to be inadequate. However, at high resolution (〈 5 km) the rheology starts to produce lines of localised deformation rates. In this study we use results from a 1-km Pan-Arctic model to investigate the influence of these deformation features on the scaling properties of sea ice deformation. For evaluation the EGPS satellite data set of small-scale sea ice kinematics for the Central Arctic (successor of RGPS) is used. The modelled sea ice deformation shows multi-fractal spatial scaling and, in this sense, agrees with the satellite data. In addition, the temporal coupling of the spatial scaling is reproduced as well. Furthermore, we examine the regional and seasonal variations of spatial scaling properties and its dependence on the ice condition, i.e. sea ice concentration and thickness, which are in agreement with previous RGPS studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Sack Lunch Seminar Series, Massachusetts Institute of Technology (MIT)
    Publication Date: 2017-01-27
    Description: Many climate models use a rheology of the viscous-plastic type to simulate sea ice dynamics. With this rheology, large scale velocity and thickness fields can be realistically simulated, but the representation of small scale deformation rates and Linear Kinematic Features (LKF) is thought to be inadequate. However, at high resolution (〈 5 km) the rheology starts to produce lines of localised deformation rates. In this study we use results from a 1-km Pan-Arctic model to investigate the influence of these deformation features on the scaling properties of sea ice deformation. For evaluation the EGPS satellite data set of small-scale sea ice kinematics for the Central Arctic (successor of RGPS) is used. The modelled sea ice deformation shows multi-fractal spatial scaling and, in this sense, agrees with the satellite data. In addition, the temporal coupling of the spatial scaling is reproduced as well. Furthermore, we examine the regional and seasonal variations of spatial scaling properties and its dependence on the ice condition, i.e. sea ice concentration and thickness, which are in agreement with previous RGPS studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Workshop on multi-scale modelling of ice characteristics and behaviour, Isaac Newton Institute, Cambridge, UK, 2017-09-11-2017-09-15
    Publication Date: 2017-11-06
    Description: Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3Polar Research Institute of China
    Publication Date: 2017-12-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3Hohai University, Nanjing, China
    Publication Date: 2017-12-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...