GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 19 (2003), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Guilloteau, Pauline; Poulin, Robert; MacLeod, Colin D (2016): Impacts of ocean acidification on multiplication and caste organisation of parasitic trematodes in their gastropod host. Marine Biology, 163(5), https://doi.org/10.1007/s00227-016-2871-5
    Publication Date: 2024-03-15
    Description: Ocean acidification is predicted to impact the structure and function of all marine ecosystems in this century. As focus turns towards possible impacts on interactions among marine organisms, its effects on the biology and transmission potential of marine parasites must be evaluated. In the present study, we investigate two marine trematode species (Philophthalmus sp. and Parorchis sp., both in the family Philophthalmidae) infecting two marine gastropods. These trematodes are unusual in that their asexually multiplying stages within snails display a division of labour, with two distinct castes, a large-bodied morph producing infective stages and a smaller morph playing a defensive role against other competing parasites. Using a potentiometric ocean acidification simulation system, we test the impacts of acidified seawater (7.8 and 7.6 pH) on the production of free-living infective stages (cercariae), the size and survival of encysted resting stages (metacercariae), and the within-host division of labour measured as the ratio between numbers of the two morphs. In general, low pH conditions caused an increase in cercarial production and a reduction in metacercarial survival. The ratio of the two castes within snail hosts tended to shift towards more of the smaller defensive morphs under low pH. However, the observed effects of reduced pH were species specific and not always unimodal. These results suggest that ocean acidification can affect the biology of marine parasites and may also impact transmission success and parasite abundance of some trematodes, with possible consequences for marine communities and ecosystems.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Colorimetric; Containers and aquaria (20-1000 L or 〈 1 m**2); Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Incubation duration; Laboratory experiment; Length; Lower_Portobello_Bay; Mollusca; Number of individuals; Number of observations; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen saturation; Oxygen saturation, standard deviation; Parorchis sp.; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Period; pH; Philophthalmus sp.; Platyhelminthes; Potentiometric titration; Ratio; Reproduction; Salinity; Salinity, standard deviation; Shell length; South Pacific; Species; Species interaction; Surface area; Temperate; Temperature, water; Temperature, water, standard deviation; Time in days; Treatment; Type; Width
    Type: Dataset
    Format: text/tab-separated-values, 65652 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Recently, there has been a concerted research effort by marine scientists to quantify the sensitivity of marine organisms to ocean acidification (OA). Empirical data generated by this research have been used to predict changes to marine ecosystem health, biodiversity and productivity that will be caused by continued acidification. These studies have also found that the effects of OA on marine organisms can be significantly modified by additional abiotic stressors (e.g. temperature or oxygen) and biotic interactions (e.g. competition or predation). To date, however, the effects of parasitic infection on the sensitivity of marine organisms to OA have been largely ignored. We show that parasitic infection significantly altered the response of a marine gastropod to simulated OA conditions by reducing the mortality of infected individuals relative to uninfected conspecifics. Without the inclusion of infection data, our analysis would not have detected the significant effect of pH on host mortality. These results strongly suggest that parasitic infection may be an important confounding factor in OA research and must be taken into consideration when assessing the response of marine species to OA.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Mollusca; Mortality/Survival; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Registration number of species; Salinity; Salinity, standard deviation; Single species; South Pacific; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Time in days; Treatment; Type; Uniform resource locator/link to reference; Zeacumantus subcarinatus
    Type: Dataset
    Format: text/tab-separated-values, 13123 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...