GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hydraulic engineering ; Environmental pollution ; Sustainable development ; Hydrogeology ; Water pollution. ; Environmental sciences. ; Angewandte Hydrogeologie ; Grundwasseranreicherung ; Infiltration ; Versickerung ; Grundwasserleiter ; Methode ; Hydrogeologie ; Hydrogeochemie ; Hydrochemie
    Description / Table of Contents: Introduction to Anthropogenic Aquifer Recharge -- Hydrogeology Basics – Aquifer Types and Hydraulics -- Vadose Zone Hydrology Basics -- Groundwater Recharge and Aquifer Water Budgets -- Geochemistry and Managed Aquifer Recharge Basics -- Anthropogenic Aquifer Recharge and Water Quality -- Contaminant Attenuation and Natural Aquifer Treatment -- MAR Project Implementation -- MAR Hydrogeological and Hydrochemistry Evaluation Techniques -- Vadose Zone Testing Techniques Clogging -- Pretreatment.-ASR and Aquifer Recharge Using Wells -- Groundwater Banking -- Surface-Spreading Systems – Infiltration Basins -- Surface-Spreading Systems (Non-Basin) -- Vadose Zone Infiltration Systems -- Recharge and Recovery Treatment Systems -- Soil-Aquifer Treatment -- Riverbank Filtration -- Saline-Water Intrusion Management -- Wastewater MAR and Indirect Potable Reuse -- Low Impact Development and Rainwater Harvesting -- Unmanaged and Unintentional Recharge
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XXV, 861 p)
    ISBN: 9783030110840
    Series Statement: Springer Hydrogeology
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham : Springer International Publishing
    Keywords: Earth sciences ; Earth Sciences ; Hydrology ; Hydrogeology ; Engineering geology ; Engineering Geology ; Foundations ; Hydraulics ; Earth sciences ; Hydrology ; Hydrogeology ; Engineering geology ; Engineering Geology ; Foundations ; Hydraulics ; Lehrbuch ; Grundwasser ; Grundwasserleiter ; Angewandte Hydrogeologie ; Grundwasserstrom ; Hydrodynamik ; Permeabilität ; Methode ; Pumpversuch ; Grundwasserreserve ; Messung ; Grundwasser ; Hydraulik ; Hydrogeologie ; Prospektion ; Methode ; Grundwasser ; Grundwasserleiter ; Angewandte Hydrogeologie ; Grundwasserstrom ; Hydrodynamik ; Permeabilität ; Grundwasserstrom ; Methode ; Pumpversuch ; Grundwasserreserve ; Grundwasserleiter ; Messung
    Description / Table of Contents: This book presents an overview of techniques that are available to characterize sedimentary aquifers. Groundwater flow and solute transport are strongly affected by aquifer heterogeneity. Improved aquifer characterization can allow for a better conceptual understanding of aquifer systems, which can lead to more accurate groundwater models and successful water management solutions, such as contaminant remediation and managed aquifer recharge systems. This book has an applied perspective in that it considers the practicality of techniques for actual groundwater management and development projects in terms of costs, technical resources and expertise required, and investigation time. A discussion of the geological causes, types, and scales of aquifer heterogeneity is first provided. Aquifer characterization methods are then discussed, followed by chapters on data upscaling, groundwater modelling, and geostatistics. This book is a must for every practitioner, graduate student, or researcher dealing with aquifer characterization.
    Type of Medium: Online Resource
    Pages: Online-Ressource (XXI, 617 p. 176 illus., 117 illus. in color, online resource)
    ISBN: 9783319321370
    Series Statement: Springer Hydrogeology
    Language: English
    Note: Description based upon print version of record
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (872 pages)
    Edition: 1st ed.
    ISBN: 9783030110840
    Series Statement: Springer Hydrogeology Series
    Language: English
    Note: Intro -- Preface -- Contents -- About the Author -- 1 Introduction to Anthropogenic Aquifer Recharge -- 1.1 Introduction -- 1.2 Definitions -- 1.3 MAR Techniques -- 1.3.1 Water Storage-Type MAR Techniques -- 1.3.2 Water Treatment-Type MAR Techniques -- 1.3.3 Salinity Barrier Systems -- 1.4 MAR as an Adaptation to Water Scarcity and Climate Change -- 1.5 MAR Advantages and Disadvantages -- 1.6 MAR System Performance and Impacts -- 1.7 Basic Feasibility, Design, and Operational Issues -- References -- 2 Hydrogeology Basics-Aquifer Types and Hydraulics -- 2.1 Introduction -- 2.2 Aquifer Types and Terminology -- 2.2.1 Aquifers, Semiconfining and Confining Units -- 2.2.2 Unconfined, Semiconfined, and Confined Aquifers -- 2.2.3 Porosity-Type Aquifer Characterization -- 2.2.4 Lithologic Aquifer Types -- 2.3 Aquifer Hydraulic Properties -- 2.3.1 Darcy's Law and Hydraulic Conductivity -- 2.3.2 Transmissivity -- 2.3.3 Storativity -- 2.3.4 Hydraulic Diffusivity -- 2.3.5 Porosity and Permeability -- 2.3.6 Dispersivity -- 2.4 Aquifer Heterogeneity -- 2.4.1 Types and Scales of Aquifer Heterogeneity -- 2.4.2 Anisotropy -- 2.4.3 Connectivity -- References -- 3 Vadose Zone Hydrology Basics -- 3.1 Introduction -- 3.2 Capillary Pressure -- 3.3 Soil-Water and Matric Potential -- 3.4 Unsaturated Hydraulic Conductivity -- 3.5 Darcy's Equation for Unsaturated Sediments -- 3.6 Infiltration Theory -- 3.7 Infiltration Controls -- 3.7.1 Introduction -- 3.7.2 Matrix and Macropore Recharge -- 3.7.3 Surface Clogging Layers -- 3.7.4 Air Entrapment -- 3.7.5 Temperature Effects on Infiltration -- 3.8 Percolation and the Fate of Infiltrated Water -- References -- 4 Groundwater Recharge and Aquifer Water Budgets -- 4.1 Introduction -- 4.2 Aquifer Water Budget Concepts -- 4.3 Precipitation (Rainfall) -- 4.3.1 Rain Gauges. , 4.3.2 Remote Sensing Measurement of Rainfall (Radar and Satellite) -- 4.4 Evapotranspiration and Lake Evaporation -- 4.4.1 Lysimeters -- 4.4.2 Soil Moisture Depletion -- 4.4.3 Sap Flow -- 4.4.4 Pan Evaporation -- 4.4.5 Micrometeorological Techniques-Eddy Covariance Method -- 4.4.6 Micrometeorological Techniques-Energy Balance Methods -- 4.4.7 Remote Sensing ET Measurements -- 4.5 Discharge -- 4.5.1 Discharge Basics -- 4.5.2 Stream and Lake Discharge -- 4.5.3 Submarine Groundwater Discharge -- 4.5.4 Wetland Discharge -- 4.6 Storage Change -- 4.6.1 Water-Level Based Methods -- 4.6.2 Relative Microgravity -- 4.6.3 Grace -- 4.7 Groundwater Pumping -- 4.7.1 Introduction -- 4.7.2 Aerial Photography and Satellite Remote Sensing -- 4.8 Recharge Estimates -- 4.8.1 Residual of Aquifer Water Budgets -- 4.8.2 Water Budgets of Surface Water Bodies -- 4.8.3 Water-Table Fluctuation Method -- 4.8.4 Chloride Mass-Balance Method -- References -- 5 Geochemistry and Managed Aquifer Recharge Basics -- 5.1 Introduction -- 5.2 Chemical Equilibrium Thermodynamics -- 5.3 Carbonate Mineral Reactions -- 5.4 Redox Reactions -- 5.4.1 Redox Basics -- 5.4.2 Oxidation-Reduction Potential -- 5.4.3 Redox State Measurement -- 5.4.4 Eh-pH Diagrams -- 5.5 Kinetics -- 5.6 Clay Minerals, Cation Exchange and Adsorption -- 5.6.1 Clay Mineralogy -- 5.6.2 Adsorption and Ion Exchange -- 5.6.3 Sorption Isotherms -- 5.6.4 Clay Dispersion -- 5.7 Geochemical Evaluation -- References -- 6 Anthropogenic Aquifer Recharge and Water Quality -- 6.1 Introduction -- 6.2 Mixing Equations and Curves -- 6.3 Dissolution, Precipitation, and Replacement -- 6.4 Redox Reactions -- 6.4.1 Recharge of Oxic Water into Reduced (Anoxic) Aquifers -- 6.4.2 Recharge of Organic-Rich Water -- 6.5 Arsenic -- 6.5.1 Sources of Arsenic in Groundwater -- 6.5.2 Arsenic in ASR Systems in Florida. , 6.5.3 Arsenic in the Bolivar, South Australia Reclaimed Water ASR System -- 6.5.4 Arsenic in Recharge Systems in the Netherlands -- 6.5.5 Management of Arsenic Leaching -- 6.6 Sorption and Cation Exchange -- 6.6.1 Introduction -- 6.6.2 Ion Exchange and MAR Water Quality -- 6.6.3 Sorption and MAR Water Quality -- References -- 7 Contaminant Attenuation and Natural Aquifer Treatment -- 7.1 Introduction -- 7.2 Pathogen NAT -- 7.2.1 Pathogen Retention and Inactivation -- 7.2.2 Field Evaluations of Pathogen Attenuation During Aquifer Recharge -- 7.2.3 Laboratory "Bench Top" Batch and Column Studies -- 7.2.4 Diffusion Chamber Studies -- 7.2.5 Prediction of Pathogen Inactivation by MAR -- 7.3 Disinfection Byproducts -- 7.3.1 Introduction -- 7.3.2 Formation of THMs and HAAs in MAR Systems -- 7.3.3 Attenuation of THMs and HAAs in MAR -- 7.3.4 Field Studies of THM and HAAs in ASR Systems -- 7.4 Trace Organic Compounds -- 7.4.1 Introduction -- 7.4.2 Laboratory Studies of TrOCs Removal During MAR -- 7.4.3 TrOCs Removal During Riverbank Filtration -- 7.4.4 TrOCs Removal During Soil-Aquifer Treatment -- 7.4.5 TrOCs Removal During Surface Spreading -- 7.4.6 TrOCs Attenuation in Groundwater (Recharge by Injection) -- 7.4.7 TrOCs Removal by NAT Summary -- 7.5 Dissolved Organic Carbon -- 7.6 Metals -- References -- 8 MAR Project Implementation and Regulatory Issues -- 8.1 Project Plan -- 8.2 Project Success Criteria -- 8.3 MAR Feasibility Assessment -- 8.4 MAR Feasibility Factors -- 8.4.1 Water Needs and Sources -- 8.4.2 Hydrogeological Factors -- 8.4.3 Infrastructure and Logistical Issues -- 8.4.4 Regulatory and Political Issues -- 8.5 Economic Analysis and MAR Feasibility -- 8.6 Project Implementation Strategies -- 8.7 Desktop Feasibility Assessment -- 8.8 Site Selection -- 8.8.1 Multiple Criteria Decision Analysis -- 8.8.2 Geographic Information Systems. , 8.8.3 Decision Support Systems -- 8.9 Phase II: Field Investigations and Testing of Potential System Sites -- 8.10 Phase III: MAR System Design -- 8.11 Phase IV: Pilot System Construction -- 8.12 Phases V and VI: Project Review, Adaptive Management, and System Expansion -- References -- 9 MAR Hydrogeological and Hydrochemistry Evaluation Techniques -- 9.1 Information Needs -- 9.2 Testing Methods Overview -- 9.3 Exploratory Wells -- 9.3.1 Mud-Rotary Method -- 9.3.2 Direct Air-Rotary Drilling -- 9.3.3 Reverse-Air Rotary Method -- 9.3.4 Dual-Tube Methods -- 9.3.5 Dual-Rotary Drilling -- 9.3.6 Cable-Tool Drilling -- 9.3.7 Rotary-Sonic Drilling -- 9.3.8 Hollow-Stem Auger Method -- 9.3.9 Wireline Coring -- 9.4 Aquifer Pumping Tests -- 9.4.1 Introduction -- 9.4.2 Pumping Test Data Analysis -- 9.4.3 Water Quality Testing -- 9.5 Slug Testing -- 9.6 Packer Tests -- 9.7 Testing and Sampling While Drilling -- 9.8 Direct-Push Technology -- 9.9 Single-Well (Push-Pull) Tracer Tests -- 9.10 Borehole Geophysical Logging -- 9.11 Surface and Airborne Geophysics -- 9.12 Core Analyses -- 9.13 Mineralogical Analyses -- 9.14 Geochemical Investigations -- 9.15 Modeling -- References -- 10 Vadose Zone Testing Techniques -- 10.1 Introduction -- 10.2 Air Entrainment -- 10.3 Soil Infiltration Rates and Hydraulic Conductivity Measurements -- 10.4 Single- and Double-Ring Infiltrometers -- 10.4.1 Methods -- 10.4.2 Single-Ring Infiltration Screening -- 10.5 Pilot (Basin) Infiltration Tests -- 10.6 Air-Entry Permeameter -- 10.7 Borehole Permeameters -- 10.8 Guelph Permeameter -- 10.9 Velocity Permeameter -- 10.10 Comparisons of Infiltrometer and Permeameter Systems -- References -- 11 Clogging -- 11.1 Introduction -- 11.2 Causes of Well Clogging -- 11.2.1 Entrapment and Filtration of Suspended Solids -- 11.2.2 Mechanical Jamming -- 11.2.3 Gas Binding. , 11.2.4 Chemical Clogging-Mineral Scaling -- 11.2.5 Chemical Clogging-Redox Reactions -- 11.2.6 Clay Swelling and Dispersion -- 11.2.7 Biological Clogging -- 11.2.8 Biological Clogging-Iron Bacteria -- 11.3 Clogging Prediction and Management -- 11.3.1 Suspended Solids Criteria -- 11.3.2 Organic Carbon Indices -- 11.3.3 Laboratory Studies of Physical and Biological Clogging -- 11.3.4 Field Studies of Clogging -- 11.3.5 Clay Dispersion -- 11.3.6 Prediction of Physical and Biological Clogging from Source Water Quality -- 11.3.7 Evaluation of Chemical Clogging Potential -- 11.4 Clogging of Surface-Spreading MAR Systems -- 11.4.1 Causes of Clogging Overview -- 11.4.2 Laboratory Investigations of Clogging of Surface-Spreading MAR Systems -- 11.4.3 Field Investigations of Clogging of Surface-Spreading MAR Systems -- References -- 12 MAR Pretreatment -- 12.1 Introduction -- 12.2 Roughing Filters -- 12.3 Granular-Media Filters -- 12.3.1 Rapid-Sand Filtration and Rapid-Pressure Filtration -- 12.3.2 Slow-Sand Filters -- 12.4 Screen Filters -- 12.5 Membrane Filtration -- 12.6 MIEX Process -- 12.7 Constructed Wetlands -- 12.8 Disinfection -- 12.8.1 Chlorine -- 12.8.2 Chloramines -- 12.8.3 Ozone -- 12.8.4 Ultraviolet Radiation -- 12.8.5 Disinfection Strategies -- 12.9 Chemical Pretreatments -- 12.9.1 pH Adjustments -- 12.9.2 Dissolved Oxygen Removal -- 12.9.3 Iron and Manganese Management -- 12.9.4 Clay Dispersion Management -- 12.10 Multiple-Element Pretreatment Systems -- 12.10.1 CERP Surface Water Treatment Systems -- 12.10.2 Wastewater Treatment Prior to Recharge -- 12.10.3 Stormwater and Surface Water Pretreatment -- 12.10.4 Full Advanced Treatment -- 12.11 Conclusions -- References -- 13 ASR and Aquifer Recharge Using Wells -- 13.1 Introduction -- 13.2 Definitions, System Types, and Useful Storage -- 13.3 Recovery Efficiency. , 13.3.1 RE of Chemically Bounded (Brackish or Saline Aquifer) ASR Systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Hydraulic engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (632 pages)
    Edition: 1st ed.
    ISBN: 9783319321370
    Series Statement: Springer Hydrogeology Series
    DDC: 551.49
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- About the Author -- 1 Aquifer Characterization and Properties -- 1.1 Introduction -- 1.2 Hydraulic Aquifer Types -- 1.3 Lithologic Aquifer Types -- 1.4 Groundwater Hydraulics Basics -- 1.4.1 Darcy's Law and Hydraulic Conductivity -- 1.4.2 Transmissivity -- 1.4.3 Storativity -- 1.4.4 Porosity and Permeability -- 1.4.5 Dispersivity -- 1.5 Aquifer Heterogeneity -- 1.5.1 Types and Scales of Aquifer Heterogeneity -- 1.5.2 Anisotropy -- 1.5.3 Connectivity -- 1.6 Aquifer Characterization Approach -- References -- 2 Facies Analysis and Sequence Stratigraphy -- 2.1 Introduction -- 2.2 Facies, Facies Sequences, and Facies Models -- 2.3 Limitation of Facies Models -- 2.4 Sequence Stratigraphy -- 2.4.1 Introduction -- 2.4.2 Sequence Stratigraphic Concepts and Definitions -- 2.4.3 Applications of Sequence Stratigraphy -- 2.5 Facies Modeling -- 2.6 Hydrofacies -- References -- 3 Siliciclastic Aquifers Facies Models -- 3.1 Introduction to Siliciclastic Aquifers -- 3.2 Fluvial Systems -- 3.2.1 Meandering River Facies -- 3.2.2 Braided-Stream Facies -- 3.2.3 Hydrogeology of Alluvial Aquifers -- 3.3 Alluvial-Fan Deposits -- 3.3.1 Alluvial-Fan Facies -- 3.3.2 Alluvial-Fan Hydrogeology -- 3.4 Deltas -- 3.5 Eolian Sand Deposits -- 3.6 Lake (Lacustrine) Deposits -- 3.7 Glacial Sediments -- 3.8 Linear Terrigenous Shorelines -- 3.8.1 Beach and Strand Plain Facies -- 3.8.2 Lagoonal and Tidal Flat Facies -- 3.8.3 Hydrogeology -- References -- 4 Carbonate Facies Models and Diagenesis -- 4.1 Introduction -- 4.2 Carbonate Diagenesis and Porosity and Permeability -- 4.2.1 Eogenetic Dissolution and Precipitation -- 4.2.2 Physical and Chemical Compaction -- 4.2.3 Dolomitization -- 4.3 Carbonate Facies and Sequence Stratigraphy -- 4.3.1 Shallowing-Upwards Sequences -- 4.3.2 Reefs -- 4.3.3 Carbonate Sands. , 4.3.4 Pelagic Carbonates -- References -- 5 Aquifer Characterization Program Development -- 5.1 Introduction -- 5.2 Groundwater Model Scale -- 5.3 Aquifer Characterization Techniques -- 5.3.1 Aquifer Hydraulic Properties Evaluation Techniques -- 5.3.2 Aquifer Lithology and Mineralogy Evaluation Techniques -- 5.3.3 Water Chemistry Evaluation Techniques -- 5.4 Scale Dependence of Aquifer Properties -- 5.5 Constraints on Implementation of Characterization Techniques -- 5.6 Use of Aquifer Characterization Data -- References -- 6 Borehole Drilling and Well Construction -- 6.1 Introduction -- 6.1.1 Well Drilling Program Considerations -- 6.1.2 Exploratory and Monitoring Wells Versus Production Well Design -- 6.2 Borehole Drilling Methods -- 6.2.1 Direct-Rotary Method -- 6.2.2 Reverse-Circulation Rotary Method -- 6.2.3 Reverse-Air Rotary Method -- 6.2.4 Dual-Tube Reverse-Circulation Rotary and Percussion Methods -- 6.2.5 Dual-Rotary Drilling -- 6.2.6 Cable-Tool Drilling -- 6.2.7 Sonic or Rotary-Sonic Drilling -- 6.2.8 Hollow-Stem Augers -- 6.3 Formation Sampling -- 6.3.1 Well Cuttings -- 6.3.2 Coring -- 6.3.2.1 Single-Wall Coring -- 6.3.2.2 Wireline Coring -- 6.3.2.3 Sidewall Coring -- 6.3.2.4 Split-Spoon Samplers -- 6.3.2.5 Thin-Walled Samplers -- 6.3.2.6 Piston Samplers -- 6.3.2.7 Core Preservation -- 6.4 Well Casing -- 6.4.1 Collapse Strength -- 6.4.2 Casing Diameter -- 6.4.3 Casing Materials -- 6.4.3.1 Mild Steel -- 6.4.3.2 PVC -- 6.4.3.3 Fiberglass -- 6.4.3.4 Stainless Steel -- 6.4.3.5 Coated Mild Steel -- 6.5 Well Completions -- 6.5.1 Well Screen Type -- 6.5.2 Filter Pack -- 6.5.3 Perforated Completions -- 6.5.4 Open-Hole Completions and Liners -- 6.6 Well Development -- 6.6.1 Introduction -- 6.6.2 Well Development Methods -- 6.6.2.1 Over Pumping -- 6.6.2.2 Surging -- 6.6.2.3 Jetting -- 6.6.2.4 Dispersants and Other Additives -- 6.6.2.5 Acidification. , References -- 7 Aquifer Pumping Tests -- 7.1 Aquifer Performance Test Design -- 7.1.1 Observation Wells -- 7.1.2 Test Duration and Pumping Rates -- 7.1.3 Pumping Rate and Water Level Data Collection -- 7.1.4 Practical Recommendations -- 7.2 Aquifer Performance Test Interpretation -- 7.2.1 Correction for Extraneous Impacts on Aquifer Water Levels (Detrending) -- 7.2.2 Conceptual or Theoretical Model and Semilog Plots -- 7.2.3 Early Test Data -- 7.3 Analytical Methods -- 7.3.1 Thiem Method -- 7.3.2 Theis Non-equilibrium Equation -- 7.3.3 Cooper-Jacob Modification of the Theis Equation -- 7.3.4 Cooper and Jacob Distance-Drawdown Method -- 7.3.5 Cooper and Jacob Modification of the Theis Equation for Recovery Phase -- 7.3.6 De Glee's Method-Steady-State Pumping of a Leaky Confined Aquifer -- 7.3.7 Hantush-Walton Method -- 7.3.8 Boulton and Neuman Methods for Unconfined Aquifers -- 7.3.9 Partially Penetrating Wells -- 7.3.10 Anisotropic Aquifers -- 7.3.11 Dual-Porosity System -- 7.4 Numerical Aquifer Test Interpretation Techniques -- 7.5 Estimating Transmissivity from Specific Capacity Data -- 7.6 Tidal Fluctuation Methods -- 7.7 Hydraulic Tomography -- 7.8 Data Analysis: What Do the Data Mean -- References -- 8 Slug, Packer, and Pressure Transient Testing -- 8.1 Slug Tests -- 8.2 Slug Testing Procedures -- 8.3 Multilevel Slug Tests -- 8.4 Slug Test Data Interpretation -- 8.4.1 Hvorslev Method -- 8.4.2 Bouwer and Rice -- 8.4.3 Cooper et al. Method -- 8.4.4 Comparison of Hvorslev, Bouwer and Rice, and Cooper et al. Methods -- 8.4.5 Oscillatory Response -- 8.4.6 Alternative Slug Test Interpretation Methods -- 8.5 Interference Tests -- 8.6 Packer Tests -- 8.6.1 Packer Testing Procedures -- 8.6.2 Potential Error Sources -- 8.6.3 Packer Test Data Analysis -- 8.6.4 Injection and Lugeon Tests -- 8.7 Dipole-Flow Tests -- 8.8 Pressure Transient Testing. , 8.8.1 Introduction -- 8.8.2 Data and Analysis Procedures -- 8.8.3 Step-Rate Injection Tests -- References -- 9 Small-Volume Petrophysical, Hydraulic, and Lithological Methods -- 9.1 Introduction -- 9.2 Core Analyses -- 9.2.1 Porosity Measurement -- 9.2.2 Hydraulic Conductivity and Permeability Measurement -- 9.2.3 Analyses of Unconsolidated Sediments -- 9.2.4 Core-Flow Tests -- 9.2.5 Mercury-Injection Porosimetry -- 9.3 Minipermeameter -- 9.4 Sand Grain Size Analysis -- 9.4.1 Grain Size Analysis Procedures -- 9.4.2 Estimation of Permeability from Grain Size Data -- 9.5 Lithological Analysis -- 9.5.1 Well Cutting and Core Descriptions -- 9.5.2 Thin-Section Petrography -- 9.5.3 Scanning Electron Microscopy and Electron Microprobe Analyses -- 9.5.4 X-Ray Diffractometry -- References -- 10 Borehole Geophysical Techniques -- 10.1 Introduction -- 10.2 Quality Assurance and Quality Control -- 10.3 Caliper Logs -- 10.4 Natural Gamma Ray Log -- 10.5 Electrical and Resistivity Logs -- 10.5.1 Spontaneous Potential -- 10.5.2 Resistivity Logs -- 10.6 Sonic (Acoustic) Logs -- 10.7 Nuclear Logging -- 10.7.1 Density Log -- 10.7.2 Neutron Log -- 10.8 Flowmeter Logs -- 10.8.1 Introduction -- 10.8.2 Spinner Flowmeter -- 10.8.3 Electromagnetic Borehole Flowmeter (EBF) -- 10.8.4 Heat-Pulse Flowmeter -- 10.8.5 Interpretation of Flowmeter Log Data -- 10.9 Temperature and Fluid Resistivity Logs -- 10.10 Borehole Imaging Logs -- 10.10.1 Borehole Video Survey -- 10.10.2 Optical Televiewer -- 10.10.3 Acoustic-Televiewer Log -- 10.10.4 Microresistivity Imaging Logs -- 10.11 Nuclear Magnetic Resonance Logs -- 10.12 Geochemical Logs -- 10.13 Cased-Hole Logs -- 10.13.1 Cased-Hole Logging Techniques -- 10.13.2 Hydrogeological Applications of Cased Hole Geophysical Logs -- 10.14 Development of Borehole Geophysical Logging Programs -- References -- 11 Surface and Airborne Geophysics. , 11.1 Introduction -- 11.2 Electrical Resistivity and Electromagnetic Techniques -- 11.3 DC Resistivity Method -- 11.4 Electromagnetic Surveys -- 11.4.1 Frequency Domain Electromagnetic Surveys -- 11.4.2 Time-Domain Electromagnetic (TDEM) Soundings -- 11.5 Self Potential -- 11.6 Induced Polarization -- 11.7 Applications of Resistivity and EM Surface Geophysics to Groundwater Investigations -- 11.7.1 Mapping of Saline-Water Interface -- 11.7.2 Depth to the Water Table -- 11.7.3 Formation and Aquifer Mapping -- 11.7.4 Mapping of Recharge Areas -- 11.7.5 Mapping Contaminant Plumes -- 11.7.6 Mapping of Regional Aquifer Flow Orientation (Fractured Rock Aquifers) -- 11.8 Ground-Penetrating Radar -- 11.9 Surface Nuclear Magnetic Resonance -- 11.10 Magnetotellurics -- 11.11 Seismic Reflection and Refraction -- 11.12 Gravity -- 11.12.1 Introduction -- 11.12.2 Relative Gravity Surveys -- 11.12.3 Applications of Microgravity Surveys to Groundwater Investigations -- 11.12.4 Gravity Recovery and Climate Experiment (GRACE) -- 11.13 Airborne Geophysics -- 11.13.1 Airborne Electromagnetic Methods -- 11.13.2 Mapping of Bottom and Top of Aquifers -- 11.13.3 Mapping Incised Pleistocene Valleys -- 11.13.4 Groundwater Salinity Mapping -- 11.13.5 Managed Aquifer Recharge Screening -- References -- 12 Direct-Push Technology -- 12.1 Introduction -- 12.2 Groundwater Sampling -- 12.3 Point-in-Time Samplers -- 12.3.1 Sealed-Screen Samplers -- 12.3.2 Exposed-Screen Samplers -- 12.3.3 Dual-Tube Coring and Groundwater Sampling -- 12.4 Direct-Push Monitoring Wells -- 12.5 Formation Testing -- 12.5.1 DPT Slug Tests -- 12.5.2 Direct-Push Permeameter -- 12.5.3 Direct-Push Injection Logger and Hydraulic Profiling Tool -- 12.5.4 Direct-Push Flowmeter Logging -- 12.5.5 Electrical Conductivity Logging -- 12.5.6 Hydostratigraphic Profiling -- 12.6 Cone Penetration Test -- References. , 13 Tracer Tests.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 36 (1989), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A consistent pattern for the silica sources, depositional environments and timing of chertification was observed in a diverse suite of five Late Mesozoic and Middle Palaeozoic carbonate sequences; the (1) Upper Greensand (Cretaceous) and (2) Portland Limestone (Jurassic) of southern England, (3) the Ramp Creek Formation (Mississippian) of southern Indiana, and the (4) lower Helderberg Group (Devonian) and (5) Onondaga Limestone (Devonian) of New York State. Nodular chert formation in all five limestone sequences occurred in sediments that were largely uncemented. Ghosts of pre-chertification carbonate cements are present in some chert nodules but are volumetrically minor. In every limestone sequence except the Upper Greensand, chertification occurred after burial to a depth sufficient for intergranular pressure solution and mechanical grain deformation of carbonate sand.Nodular chert is most abundant in subtidal, normal marine wackestones and mudstones that were deposited at or below fair-weather wave base, and is absent or rare in supratidal, intertidal and high-energy subtidal limestones and dolomites. An intraformational sponge spicule silica source for chert nodules is suggested by direct evidence, such as calcitized sponge spicules in the host limestone, and circumstantial evidence, such as ghosts of sponge spicules in chert nodules and a correlation of chert abundance with depositional environment. Most molds of siliceous sponge spicules were apparently obliterated by post-chertification intergranular compaction. We propose that these general trends for the depositional environments, silica sources and timing of chertification are representative of most Mesozoic to Middle Palaeozoic platform limestones.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Sedimentology 48 (2001), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Nodular cherts can provide a window on the original sediment composition, diagenetic history and biota of their host rock because of their low susceptibility to further diagenetic alteration. The majority of Phanerozoic cherts formed by the intraformational redistribution of biogenic silica, particularly siliceous sponge spicules, radiolarian tests and diatom frustules. In the absence of a biogenic silica source, Precambrian cherts necessarily had to have had a different origin than Phanerozoic cherts. The Mesoproterozoic Belt Supergroup in Glacier National Park contains a variety of chert types, including silicified oolites and stromatolites, which have similar microtextures and paragenesis to Phanerozoic cherts, despite their different origins. Much of the silicification in the Belt Supergroup occurred after the onset of intergranular compaction, but before the main episode of dolomitization. The Belt Supergroup cherts probably had an opal-CT precursor, in the same manner as many Phanerozoic cherts. Although it is likely that Precambrian seas had higher silica concentrations than at present because of the absence of silica-secreting organisms, no evidence was observed that would suggest that high dissolved silica concentrations in the Belt sea had a significant widespread effect on silicification. The rarity of microfossils in Belt Supergroup cherts indicates that early silicification, if it occurred, was exceptional and restricted to localized environments. The similarity of microtextures in cherts of different ages is evidence that the silicification process is largely controlled by host carbonate composition and dissolved silica concentration during diagenesis, regardless of the source of silica.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Hydrogeology journal 6 (1998), S. 538-548 
    ISSN: 1435-0157
    Keywords: Key words waste disposal ; injection wells ; carbonate rocks ; Florida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Résumé Depuis 1988, dans le sud-ouest de la Floride, l'injection dans des puits profonds a été pratiquée pour stocker des déchets liquides domestiques. Ces déchets liquides sont injectés dans une zone à transmissivité extrêmement forte d'une dolomie fracturée de la formation Oldsmar de l'Éocène inférieur, appartenant au système aquifère de Floride ; cette zone est désignée habituellement sous le nom de zone de Boulder. Les données obtenues au cours de la foration et des essais opérationnels sur les puits d'injection dans le sud-ouest de la Floride fournit des informations sur la nature de la zone d'injection et sur les couches supérieures qui la rendent captive. La localisation des zones à forte transmissivité susceptibles de recevoir de grandes quantités d'eaux usées est variable verticalement et horizontalement et ne peut pas être prédite avec certitude. Par exemple, un intervalle à forte transmissivitéépais de 40,9 m dans un puits d'injection est absent dans un puits foréà seulement 85,4 m. Une migration vers l'amont de fluides injectés à faible densité s'est produite, mais les liquides injectés n'ont été détectés dans aucun des sites de contrôle, comme cela s'est produit dans les sites de puits d'injection le long des côtes de Floride sud-est, centre-ouest et centre-est. Le confinement primaire des liquides injectés, c'est-à-dire les niveaux les plus profonds de confinement effectif, consiste en des niveaux non fracturés de dolomie à faible perméabilité dans la formation Oldsmar, dont la localisation est elle aussi variable latéralement et verticalement. L'origine et le contrôle de la distribution des fractures dans la formation Oldsmar sont mal connues.
    Abstract: Resumen La inyección en pozos profundos se está usando desde 1988 para el vertido de residuos líquidos municipales en el sudoeste de Florida. Los residuos líquidos se inyectan en una zona altamente transmisiva correspondiente a una dolomita fracturada de la Formación Oldsmar, que data de principios del Eoceno, en una zona comúnmente denominada Boulder. Los datos recogidos durante la perforación y la operación de estos pozos proporcionan información sobre la naturaleza de la zona de inyección y de las capas confinantes suprayacentes. La localización de las zonas de alta transmisividad que potencialmente pueden aceptar grandes cantidades de residuos líquidos varía horizontal y verticalmente, por lo que su localización supone una gran incertidumbre. Como ejemplo, un intervalo altamente transmisivo de 40.9 m de espesor presente en un pozo de inyección no aparecía en otro pozo situado a tan sólo 85.4 m. En algunos puntos se ha detectado migración de los fluidos inyectados de baja densidad hacia la superficie, pero en cambio los líquidos no aparecen en ningún pozo de control profundo, cosa que sí ha sucedido en otros pozos de inyección a lo largo de las costas sudeste, oeste-central y este-central de Florida. La contención primaria de los líquidos inyectados (es decir, las capas más profundas que producen un confinamiento efectivo) consisten en capas de dolomita no fracturada de baja permeabilidad de la Formación Oldsmar, también variables lateral y verticalmente. El origen y la distribución de las fracturas en la Formación Oldsmar no son bien conocidos.
    Notes: Abstract  Deep-well injection has been used to dispose of municipal liquid wastes in southwestern Florida since 1988. The liquid wastes are injected into an extremely high-transmissivity zone of fractured dolomite in the Early Eocene Oldsmar Formation of the Floridan aquifer system; this zone is commonly referred to as the Boulder Zone. Data collected during the drilling and operational testing of southwestern Florida injection wells provide insights into the nature of the injection zone and overlying confining beds. The location of high-transmissivity zones that are capable of accepting large quantities of waste water is vertically and horizontally variable and cannot be predicted with certainty. A 40.9-m thick high-permeability interval in one injection well, for example, was absent in a well drilled only 85.4 m away. Some upward migration of low-density injected fluids has occurred, but at no site were the injected liquids detected in deep monitor wells, such as occurred at injection-well sites along the coasts of southeastern, west-central, and east-central Florida. The primary confinement of the injected liquids (i.e., deepest effective confining beds) consists of unfractured beds of low-permeability dolomite within the Oldsmar Formation, whose locations are also laterally and vertically variable. The origin and controls of the distribution of fractures in the Oldsmar Formation are poorly understood.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-03-01
    Description: The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean {delta}18O = +3.91{per thousand} V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the Avon Park Formation and elsewhere: (1) volume-for-volume replacement at a crystal scale, (2) coupled growth of dolomite crystals and dissolution of host calcium carbonate matrix, and (3) automorphic replacement by euhedral dolomite crystals. The force-of-crystallization model also does not require an influx of externally derived water that is undersaturated with respect to calcite to dissolve calcite, a fact that could simplify diagenetic models of porosity generation in dolostones. The later addition of external carbonate can result in a substantial reduction in porosity by the precipitation of dolomite cement, which could convert a high porosity sucrosic dolostone into a dense "Paleozoic type" dolostone.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...