GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-21
    Description: The global forest age dataset (GFAD v.1.1) provides a correction to GFAD v1.0, as well as its uncertainties. GFAD describes the age distributions of plant functional types (PFT) on a 0.5-degree grid. Each grid cell contains information on the fraction of each PFT within an age class. The four PFTs, needleaf evergreen (NEEV), needleleaf deciduous (NEDE), broadleaf evergreen (BREV) and broadleaf deciduous (BRDC) are mapped from the MODIS Collection 5.1 land cover dataset, crosswalking land cover types to PFT fractions. The source of data for the age distributions is from country-level forest inventory for temperate and high-latitude countries, and from biomass for tropical countries. The inventory and biomass data are related to fifteen age classes defined in ten-year intervals, from 1-10 up to a class greater than 150 years old. The uncertainties are estimated for the inventory derived forest age classes as +/- 40% of the mean age. For the areas where age is derived from aboveground biomass, the uncertainty is derived from the 5th and 95th percentile estimates of biomass, but using the same age-aboveground biomass curves. The GFAD dataset represents the 2000-2010 era.
    Type: Dataset
    Format: application/zip, 30.3 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-21
    Description: The global forest age dataset (GFAD) describes the age distributions of plant functional types (PFT) on a 0.5-degree grid. Each grid cell contains information on the fraction of each PFT within an age class. The four PFTs, needleaf evergreen (NEEV), needleleaf deciduous (NEDE), broadleaf evergreen (BREV) and broadleaf deciduous (BRDC) are mapped from the MODIS Collection 5.1 land cover dataset, crosswalking land cover types to PFT fractions. The source of data for the age distributions is from country-level forest inventory for temperate and high-latitude countries, and from biomass for tropical countries. The inventory and biomass data are related to fifteen age classes defined in ten-year intervals, from 1-10 up to a class greater than 150 years old. The GFAD dataset represents the 2000-2010 era.
    Type: Dataset
    Format: application/zip, 10.1 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr−1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr−1) or sequestered in sediments (~0.5 Pg C yr−1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr−1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr−1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr−1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-21
    Description: Overviewing the European carbon (C), greenhouse gas (GHG), and non-GHG fluxes, gross primary productivity (GPP) is about 9.3 Pg yr-1, and fossil fuel imports are 1.6 Pg yr-1. GPP is about 1.25% of solar radiation, containing about 360 × 1018 J energy - five times the energy content of annual fossil fuel use. Net primary production (NPP) is 50%, terrestrial net biome productivity, NBP, 3%, and the net GHG balance, NGB, 0.3% of GPP. Human harvest uses 20% of NPP or 10% of GPP, or alternatively 1‰ of solar radiation after accounting for the inherent cost of agriculture and forestry, for production of pesticides and fertilizer, the return of organic fertilizer, and for the C equivalent cost of GHG emissions. C equivalents are defined on a global warming potential with a 100-year time horizon. The equivalent of about 2.4% of the mineral fertilizer input is emitted as N2O. Agricultural emissions to the atmosphere are about 40% of total methane, 60% of total NO-N, 70% of total N2O-N, and 95% of total NH3-N emissions of Europe. European soils are a net C sink (114 Tg yr−1), but considering the emissions of GHGs, soils are a source of about 26 Tg CO2 C-equivalent yr-1. Forest, grassland and sediment C sinks are offset by GHG emissions from croplands, peatlands and inland waters. Non-GHGs (NH3, NOx) interact significantly with the GHG and the C cycle through ammonium nitrate aerosols and dry deposition. Wet deposition of nitrogen (N) supports about 50% of forest timber growth. Land use change is regionally important. The absolute flux values total about 50 Tg C yr-1. Nevertheless, for the European trace-gas balance, land-use intensity is more important than land-use change. This study shows that emissions of GHGs and non-GHGs significantly distort the C cycle and eliminate apparent C sinks.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 111 (2014): 8856-8860, doi:10.1073/pnas.1320761111.
    Description: The traditional view of forest dynamics originated by Kira, Shidei, and Odum suggests a decline in net primary productivity (NPP) in ageing forests due to stabilized gross primary productivity (GPP) and continuously increased autotrophic respiration (Ra). The validity of these trends in GPP and Ra is, however, very difficult to test because of the lack of long-term ecosystem-scale field observations of both GPP and Ra. Ryan and colleagues have proposed an alternative hypothesis drawn from site-specific results that aboveground respiration and belowground allocation decreased in ageing forests. Here we analyzed data from a recently assembled global database of carbon fluxes and show that the classical view of the mechanisms underlying the age-driven decline in forest NPP is incorrect and thus support Ryan’s alternative hypothesis. Our results substantiate the age-driven decline in NPP, but in contrast to the traditional view, both GPP and Ra decline in ageing boreal and temperate forests. We find that the decline in NPP in ageing forests is primarily driven by GPP, which decreases more rapidly with increasing age than Ra does, but the ratio of NPP/GPP remains approximately constant within a biome. Our analytical models describing forest succession suggest that dynamic forest ecosystem models that follow the traditional paradigm need to be revisited.
    Description: We thank all site investigators, their funding agencies and the various regional flux networks (Afriflux, AmeriFlux, AsiaFlux, CarboAfrica, CarboEurope-IP, ChinaFlux, Fluxnet-Canada, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, and USCCC) and the Fluxnet project, whose support is essential for obtaining the measurement data without which this synthesis analysis would not be possible. The collection of the original global database was funded by the Research Foundation - Flanders (FWO-Vlaanderen) who supported S.L. with a post-doctoral fellowship and a research grant (FWO 1.5037.07N). J. Tang was partially supported by U.S. Department of Energy the Office of Biological and Environmental Research (DE-SC0006951), and National Science Foundation (DBI-959333 and AGS-1005663).
    Description: 2014-12-02
    Keywords: Succession ; Chronosequence ; Forest dynamics ; Photosynthesis ; Respiration ; Carbon flux ; Carbon use efficiency
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...