GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2023-06-19
    Beschreibung: Geochemical analyses of carbonate minerals yield multiple parameters which can be used to estimate the temperature and water composition at which they formed. Analysis of fluid trapped in minerals is a potentially powerful tool to reconstruct paleotemperatures as well as diagenetic and hydrothermal processes, as these could represent the parent fluid. Internal fluids play important roles during the alteration of carbonate fossils, lowering energetic barriers associated with resetting of clumped isotopes, as well as mediating the transport of elements during diagenesis. Here, we explore the behavior of the ∆47–∆48 “dual‐clumped” isotope thermometer during fluid‐carbonate interaction and demonstrate that it is highly sensitive to the water/carbonate ratio, behaving as a linear system in “rock buffered” alteration, and as a decoupled system in water‐dominated systems due to non‐linear mixing effects in ∆48. Dry heating experiments show that the extrapolated “heated” end‐member is indistinguishable from the predicted ∆47 and ∆48 value expected for the experimental temperature. Furthermore, we evaluate two common laboratory sampling methods for their ability to thermally alter samples. We find that the temperature of the commonly used crushing cells used to vapourize water for fluid inclusion δ18O analyses is insufficient to cause fluid‐carbonate oxygen isotope exchange, demonstrating its suitability for analyses of fluid inclusions in carbonates. We also find that belemnites sampled with a hand‐drill yield significantly warmer paleotemperatures than those sampled with mortar and pestle. We conclude that thermally‐driven internal fluid‐carbonate exchange occurs indistinguishably from isotopic equilibrium, limited by the extent to which internal water and carbonate can react.
    Beschreibung: Plain Language Summary: Carbonate minerals contain multiple, independent, chemical and isotopic parameters which can be used to calculate the temperature at which the mineral formed. If these proxies agree with one another, it has been confidently assumed that the temperature is indeed genuine. Here, we investigate three such parameters and show how they record kinetic processes during mineral formation, as well as thermally‐driven processes which may alter a climate record. We find that this method could potentially be used to study the kinetic factors at play during biomineralization, even if the “true” temperature is unknown. We also find that some thermal processes result in all three parameters agreeing with one another. Because thermal alteration poses a potential dilemma for climate researchers, we investigate two common laboratory preparation techniques that involve heating a sample before analysis: drilling and heating sample for fluid inclusion analysis. We find that the heat of a drill is sufficient to facilitate these reactions, and potentially imparts a warm bias onto paleotemperatures, however the apparatus used for analyzing fluid inclusions does not appear to significantly alter the material. We conclude our approach using fluid inclusion analysis and dual‐clumped isotopes has the potential to resolve many ambiguities in interpreting climate records.
    Beschreibung: Key Points: We explore the behavior of dual‐clumped and fluid‐inclusion isotope paleothermometers during thermal alteration. Different conditions during diagenesis may result in discrepant paleotemperature estimates, which may be used to identify altered records. Hand‐drilling belemnites produces sufficient heat to reset paleotemperatures, but the heat during analysis of fluid inclusions does not.
    Beschreibung: DFG
    Beschreibung: https://doi.org/10.5281/zenodo.7565557
    Schlagwort(e): ddc:551.9 ; diagenesis ; clumped isotopes ; fluid inclusions ; numerical modeling
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Mirzaloo, Maryam; Nürnberg, Dirk; Kienast, Markus; van der Lubbe, H J L (2019): Synchronous Changes in Sediment Transport and Provenance at the Iceland‐Faroe Ridge Linked to Millennial Climate Variability From 55 to 6 ka BP. Geochemistry, Geophysics, Geosystems, 20(8), 4184-4201, https://doi.org/10.1029/2019GC008298
    Publikationsdatum: 2023-01-30
    Beschreibung: We present lithogenic grain-size composition, high-resolution XRF bulk chemistry records, weighted coarse bulk fraction (〉150 μm) and the isotopic record of benthic foraminifera (C.wuellestorfi) of gravity sediment cores P457-905 and P57-909 from the southwestern flank of the Iceland-Faroe Ridge.
    Schlagwort(e): Dansgaard-Oeschger Oscillation; grain-size end-members; Iceland-Scotland Overflow; sediment provenances; sediment transport
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-03-03
    Beschreibung: We present lithogenic grain-size composition, high-resolution XRF bulk chemistry records, weighted coarse bulk fraction (〉150 μm) and the isotopic record of benthic foraminifera (C.wuellestorfi) of gravity sediment cores P457-909 from the southwestern flank of the Iceland-Faroe Ridge.
    Schlagwort(e): AGE; Cibicidoides wuellerstorfi, δ13C; Cibicidoides wuellerstorfi, δ18O; Dansgaard-Oeschger Oscillation; DEPTH, sediment/rock; End member; GC; grain-size end-members; Gravity corer; Iceland-Scotland Overflow; Ice rafted debris; log-Titanium/Potassium ratio; log-Zirconium/Rubidium ratio; POS457; POS457_909-2; Poseidon; sediment provenances; sediment transport
    Materialart: Dataset
    Format: text/tab-separated-values, 1232 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-03-03
    Beschreibung: We present lithogenic grain-size composition, high-resolution XRF bulk chemistry records, weighted coarse bulk fraction (〉150 μm) and the isotopic record of benthic foraminifera (C.wuellestorfi) of gravity sediment cores P457-905 from the southwestern flank of the Iceland-Faroe Ridge.
    Schlagwort(e): AGE; Cibicidoides wuellerstorfi, δ13C; Cibicidoides wuellerstorfi, δ18O; Dansgaard-Oeschger Oscillation; DEPTH, sediment/rock; End member; GC; grain-size end-members; Gravity corer; Iceland-Scotland Overflow; Ice rafted debris; log-Titanium/Potassium ratio; log-Zirconium/Rubidium ratio; POS457; POS457_905-2; Poseidon; sediment provenances; sediment transport
    Materialart: Dataset
    Format: text/tab-separated-values, 2787 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-09-23
    Beschreibung: Marine sediments deposited off the Zambezi River that drains a considerable part of the southeast African continent provide continuous records of the continental climatic and environmental conditions. Here we present time series of neodymium (Nd) isotope signatures of the detrital sediment fraction during the past ~45,000 years, to reconstruct climate-driven changes in the provenance of clays deposited along the Mozambique Margin. Coherent with the surface current regime, the Nd isotope distribution in surface sediments reveals mixing of the alongshore flowing Zambezi suspension load with sediments supplied by smaller rivers located further north. To reconstruct past changes in sediment provenances, Nd isotope signatures of clays that are not significantly fractionated during weathering processes have been obtained from core 64PE304-80, which was recovered just north of the Zambezi mouth at 1329 m water depth. Distinctly unradiogenic clay signatures (ENd values 〈214.2) are found during the Last Glacial Maximum, Heinrich Stadial 1, and Younger Dryas. In contrast, the Nd isotope record shows higher, more radiogenic isotope signatures during Marine Isotope Stage 3 and between ~15 and ~5 ka BP, the latter coinciding with the timing of the northern hemisphere African Humid Period. The clay-sized sediment fraction with the least radiogenic Nd isotope signatures was deposited during the Holocene, when the adjacent Mozambique Shelf became completely flooded. In general, the contribution of the distinctly unradiogenic Zambezi suspension load has followed the intensity of precession-forced monsoonal precipitation and enhanced during periods of increased southern hemisphere insolation and high-latitude northern hemispheric climate variability.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2023-03-22
    Beschreibung: Unique marine sediment cores retrieved from the southwestern slope of the Iceland‐Faroe Ridge (IFR), close to the main axis of the Iceland‐Scotland Overflow Water (ISOW) revealed prominent sedimentary cycles reflecting near‐bottom current dynamics, sediment transport and deposition, coincident with Dansgaard‐Oeschger cycles and deglacial perturbations of the Atlantic Meridional Overturning Circulation (AMOC). The transition between Greenland Stadials (GSs) and Greenland Interstadials (GIs) follows a distinct, recurring sedimentation pattern. Basaltic (Ti‐rich) silts were transported from local volcanic sources by strong bottom currents and deposited during GIs comparable to modern ocean circulation. Finer‐grained felsic (K‐rich) sediments were deposited during GSs, when ISOW was weak. Possible felsic source areas include British‐Ireland and/or Fennoscandian shelf areas. A cyclic saw‐tooth pattern of bottom current strength is characterized by gradual intensification during GIs followed by a sharp decline towards GSs as is documented at core sites along the flank of Reykjanes Ridge. The cores north of Faroe Channel instead document the opposite pattern. This suggests that the near‐bottom currents along the Reykjanes Ridge are strongly controlled by the flow cascading over the IFR. Heinrich (like) Stadials (HSs) especially HS‐1 and HS‐2 are characterized by the deposition of very fine felsic sediments pointing to weakened bottom currents. Distinct coarse‐grained intervals of ice rafted debris (IRD) are absent from the sediment records, although pebble and gravel sized IRD is irregularly distributed throughout the fine sediment matrix. Near bottom currents are considered to have a major control on the lithogenic sediment deposition southwest of the Iceland‐Faroe Ridge and further down‐stream.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-02-03
    Beschreibung: The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today; in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled. An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian–Atlantic Southern Ocean (0–50°E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to ‘escape’ into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the ‘southern escape’ and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the ‘100-kyr world’, in which glacial–interglacial cycles occur at roughly 100,000-year periods.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-10-11
    Beschreibung: Unique marine sediment cores retrieved from the southwestern slope of the Iceland-Faroe Ridge (IFR), close to the main axis of the Iceland-Scotland Overflow Water (ISOW), revealed prominent sedimentary cycles reflecting near-bottom current dynamics, sediment transport, and deposition, coincident with Dansgaard-Oeschger cycles and deglacial perturbations of the Atlantic Meridional Overturning Circulation. The transition between Greenland Stadials (GSs) and Greenland Interstadials (GIs) follows a distinct, recurring sedimentation pattern. Basaltic (Ti-rich) silts were transported from local volcanic sources by strong bottom currents and deposited during GIs comparable to modern ocean circulation. Finer-grained felsic (K-rich) sediments were deposited during GSs, when Iceland-Scotland Overflow was weak. Possible felsic source areas include British-Ireland and/or Fennoscandian shelf areas. A cyclic sawtooth pattern of bottom current strength is characterized by gradual intensification during GIs followed by a sharp decline toward GSs as is documented at core sites along the flank of Reykjanes Ridge. The cores north of the Faroe Channel instead document the opposite pattern. This suggests that the near-bottom currents along the Reykjanes Ridge are strongly controlled by the flow cascading over the IFR. Heinrich-(like) HS-1 and HS-2, are characterized by the deposition of very fine felsic sediments pointing to weakened bottom currents. Distinct coarse-grained intervals of ice-rafted debris are absent from the sediment records, although pebble- and gravel-sized ice-rafted debris is irregularly distributed throughout the fine sediment matrix. Near-bottom currents are considered to have a major control on the lithogenic sediment deposition southwest of the IFR and further downstream.
    Schlagwort(e): Iceland-Scotland Overflow ; Oscillation ; sediment transport ; sediment provenances ; grain size end-members
    Sprache: Englisch
    Materialart: map
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...