GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4309-4327, doi:10.1175/JCLI-D-17-0407.1.
    Description: Multidecadal hydroclimate variability has been expressed as “megadroughts” (dry periods more severe and prolonged than observed over the twentieth century) and corresponding “megapluvial” wet periods in many regions around the world. The risk of such events is strongly affected by modes of coupled atmosphere–ocean variability and by external impacts on climate. Accurately assessing the mechanisms for these interactions is difficult, since it requires large ensembles of millennial simulations as well as long proxy time series. Here, the Community Earth System Model (CESM) Last Millennium Ensemble is used to examine statistical associations among megaevents, coupled climate modes, and forcing from major volcanic eruptions. El Niño–Southern Oscillation (ENSO) strongly affects hydroclimate extremes: larger ENSO amplitude reduces megadrought risk and persistence in the southwestern United States, the Sahel, monsoon Asia, and Australia, with corresponding increases in Mexico and the Amazon. The Atlantic multidecadal oscillation (AMO) also alters megadrought risk, primarily in the Caribbean and the Amazon. Volcanic influences are felt primarily through enhancing AMO amplitude, as well as alterations in the structure of both ENSO and AMO teleconnections, which lead to differing manifestations of megadrought. These results indicate that characterizing hydroclimate variability requires an improved understanding of both volcanic climate impacts and variations in ENSO/AMO teleconnections.
    Description: This work is supported by NSF EaSM Grants AGS-1243125 and NCAR-1243107 to The University of Arizona.
    Description: 2018-11-03
    Keywords: Drought ; Climate variability ; ENSO ; Paleoclimate ; Climate models ; Multidecadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-01
    Description: New collections of a leaf compression-impression paleoflora preserved in fluvio-lacustrine sediments of the upper Chickaloon Formation, south-central Alaska, United States, provide leaf physiognomic climate estimates for the early Eocene in southern Alaska and rare data on plant-insect interactions from a subarctic setting. Thirty-nine broadleaf angiosperm morphotypes occur in a parautochthonous assemblage along with Metasequoia shoots and trunks, compressions of a diverse suite of seeds, monocotyledonous aquatic plants, freshwater gastropods, and inclusion-bearing dispersed amber. Leaf-character derived mean annual temperature estimates (11-14.6 {degrees}C) are significantly warmer than Alaska at present and indicate warm temperate conditions at the time of deposition. Leaf-derived mean annual precipitation estimates of [~]110-160 cm/annum are comparable to those from similar-age paleofloras in Arctic Canada and indicate wetter conditions than nearly coeval paleofloras further south in the North American mid-latitudes. Leaf herbivory is rare in the Chickaloon assemblage ([~]9% of leaf fragments) as compared to other, lower latitude Eocene assemblages, but exhibits four of the main leaf-damage guilds (hole feeding, margin feeding, surface feeding, and skeletonization). These data provide a rare glimpse at a high-latitude terrestrial forested ecosystem during a global hothouse climate phase and thus have implications in understanding how biogeographic patterning and ecological systems respond to non-analog, warm high-latitude environmental conditions.
    Print ISSN: 0883-1351
    Electronic ISSN: 0883-1351
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...