GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-30
    Description: With a focus on white marlin (Tetrapturus albidus), a concurrent electronic tagging and larval sampling effort was conducted in the vicinity of Mona Passage (off southeast Hispaniola), Dominican Republic, during April and May 2003. Objectives were 1) to characterize the horizontal and vertical movement of adults captured from the area by using pop-up satellite archival tags (PSATs); and 2) bymeans of larval sampling, to investigate whether fish were reproducing. Trolling from a sportfishing vessel yielded eight adult white marlin and one blue marlin (Makaira nigricans); PSAT tags were deployed on all but one of these individuals. The exception was a female white marlin thatwas unsuitable for tagging because of injury; the reproductive state of its ovaries was examined histologically. Seven of the PSATs reported data summaries for water depth, temperature, and light levels measured every minute for periods ranging from 28 to 40 days. Displacement of marlin from the location of release to the point of tag pop-up ranged from 3l.6 to 267.7 nautical miles (nmi) and a mean displacement was 3.4 nmi per day forwhite marlin. White and blue marlin mean daily displacements appeared constrained compared to the resultsof other marlin PSAT tagging studies. White marlin ovarian sections contained postovulatory follicles and final maturation-stage oocytes, which indicated recent and imminent spawning. Neuston tows (n=23) yielded 18istiophorid larvae: eight were white marlin, four were blue marlin, and six could not be identified to species. We speculate that the constrained movement patterns of adults may be linked to reproductive activity for both marlin species, and, if true, these movement patterns may haveseveral implications for management. Protection of the potentially important white marlin spawning ground near Mona Passage seems warranted, at least until further studies can be conducted on the temporal and spatialextent of reproduction and associated adult movement.
    Keywords: Biology ; Ecology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 659-669
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 280 (2013): 20130327, doi:10.1098/rspb.2013.0327.
    Description: Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions, and evidence. We explore latitudinal differences in: 1) biological (e.g., species composition, spawning mode, pelagic larval duration (PLD)), 2) physical (e.g., water movement, habitat fragmentation), and 3) biophysical factors (primarily temperature, which could strongly affect development, swimming ability, or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature, and larval swimming, and each could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat, and geographic region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes, as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.
    Description: TK was supported by the Norwegian Research Council through project MENUII #190286. JML was supported by ARC Discovery Grant DP110100695. JEC and RRW were supported by the Partnership for the Interdisciplinary Study of Coastal Oceans, funded by The David and Lucille Packard Foundation and the Gordon and Betty Moore Foundation.
    Description: 2014-03-20
    Keywords: Population connectivity ; Larval dispersal ; Pelagic larval duration ; Larval behaviour ; Genetic structure ; Habitat fragmentation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Marine Pollution Bulletin 136 (2018): 282-290, doi:10.1016/j.marpolbul.2018.09.009.
    Description: Sound-sensitive organisms are abundant on coral reefs. Accordingly, experiments suggest that boat noise could elicit adverse effects on coral reef organisms. Yet, there are few data quantifying boat noise prevalence on coral reefs. We use long-term passive acoustic recordings at nine coral reefs and one sandy comparison site in a marine protected area to quantify spatio-temporal variation in boat noise and its effect on the soundscape. Boat noise was most common at reefs with high coral cover and fish density, and temporal patterns reflected patterns of human activity. Boat noise significantly increased low-frequency sound levels at the monitored sites. With boat noise present, the peak frequencies of the natural soundscape shifted from higher frequencies to the lower frequencies frequently used in fish communication. Taken together, the spectral overlap between boat noise and fish communication and the elevated boat detections on reefs with biological densities raises concern for coral reef organisms.
    Description: This research was funded by the National Science Foundation Biological Oceanography Program (award OCE-1536782) and the WHOI Summer Student Fellowship Program.
    Keywords: Bioacoustics ; Noise pollution ; Soundscapes ; Ecoacoustics ; Coral reefs
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 109/110 (2013): 69-77, doi:10.1016/j.jmarsys.2012.05.002.
    Description: The longtime focus on factors that influence the survival of marine fish larvae has yielded an extensive number of studies on larval fish diets and feeding success. In light of a recent increase in such studies within lower latitudes, results from the peer-reviewed literature were synthesized to examine both latitudinal and taxonomic differences in several trophic-related categories, including feeding incidence, trophic niche breadth, ontogenetic diet shifts, dominant prey types, diet broadness, and larval piscivory. A total of 204 investigations (taxon-article combinations) contained suitable results for at least one of these categories. Feeding incidences (proportions of larvae containing food) were significantly higher in lower latitudes with all taxa combined, as well as only within the order Perciformes. Feeding incidences also differed among orders, with Perciformes and Scorpaeniformes having the highest values. The number of larval taxa exhibiting a significantly increasing niche breadth (SD of the log of prey sizes) with larval size decreased toward lower latitudes, with some taxa in lower latitudes exhibiting a decrease in niche breadth with size. The frequency of exhibiting ontogenetic diets shifts decreased with decreasing latitude, as did relative diet broadness (a function of prey types). The most common dominant prey types in the diets of higher latitude larvae were nauplii and calanoid copepods, with cyclopoids being rare in higher latitudes. Dominant prey types in lower latitudes were more diverse, with nauplii, calanoids, and cyclopoids being equally important. Appendicularians increased in importance with decreasing latitude, and one of the clearest latitudinal distinctions was the display of larval piscivory (almost exclusively by scombroid taxa), which was highly concentrated in lower latitudes. Overall, the latitudinal differences observed for multiple trophic related factors highlight inherent distinctions in larval fish feeding ecologies, likely reflecting differences in the overall structure of planktonic food webs over large latitudinal gradients.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Cooperative Institute for the North Atlantic Region.
    Keywords: Fish larvae ; Larval fish ; Diets ; Feeding ; Zooplankton ; Trophodynamics ; Piscivory ; Review
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Bulletin of Marine Science 93 (2017): 987-996, doi:/10.5343/bms.2017.1003.
    Description: Deep-water demersal fishes represent an understudied but ecologically important group of organisms. Select species of demersal fishes rely on pelagic prey items, representing a direct transport of surface carbon to greater depths. Barrelfish Hyperoglyphe perciformis (Mitchell, 1818), which inhabit deep slope waters, are a species that has been suggested to fill this role, as congeners consume primarily pelagic gelatinous zooplankton; however, there is a dearth of information on the trophic ecology of barrelfish. Stomach content and stable isotope analyses were conducted on barrelfish caught by recreational fishers off Miami, Florida to improve our understanding of the feeding of this species. Pyrosoma atlanticum (Péron, 1804), a pelagic, vertically migrating tunicate, represented 89% of the barrelfish diet by weight. Mesopelagic fish and shrimp contributed much smaller proportions. Standard ellipse areas corrected for sample size (SEAc) showed a substantially smaller isotopic niche width for barrelfish (0.606 ‰2) than dolphinfish (2.16 ‰2), king mackerel (3.04 ‰2), or wahoo (1.97 ‰2). Coupled with dependence on a singular prey item, the low SEAc of barrelfish suggests they occupy a limited trophic niche space. Overlap of barrelfish SEAc with dolphinfish (99.5% overlap) and king mackerel (100% overlap) indicate that the carbon sources as well as the number of trophic steps for barrelfish are similar to king mackerel and dolphinfish and are linked to surface waters. This trophic linkage suggests that barrelfish may play a role in carbon export and further study into their behavior and daily consumption rates is warranted for quantifying this role.
    Description: Funding was provided to JJS from a Small Undergraduate Research Grant Experience (SURGE). JKL was supported as a Cooperative Institute for the North Atlantic Region fellow with funds from NOAA.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2014. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 27, no.4 (2014): 26-41, doi:10.5670/oceanog.2014.84.
    Description: In the past 100 years since the birth of fisheries oceanography, research on the early life history of fishes, particularly the larval stage, has been extensive, and much progress has been made in identifying the mechanisms by which factors such as feeding success, predation, or dispersal can influence larval survival. However, in recent years, the study of fish early life history has undergone a major and, arguably, necessary shift, resulting in a growing body of research aimed at understanding the consequences of climate change and other anthropogenically induced stressors. Here, we review these efforts, focusing on the ways in which fish early life stages are directly and indirectly affected by increasing temperature; increasing CO2 concentrations, and ocean acidification; spatial, temporal, and magnitude changes in secondary production and spawning; and the synergistic effects of fishing and climate change. We highlight how these and other factors affect not only larval survivorship, but also the dispersal of planktonic eggs and larvae, and thus the connectivity and replenishment of fish subpopulations. While much of this work is in its infancy and many consequences are speculative or entirely unknown, new modeling approaches are proving to be insightful by predicting how early life stage survival may change in the future and how such changes will impact economically and ecologically important fish populations.
    Description: We acknowledge support from the Ocean Life Institute (JKL) at Woods Hole Oceanographic Institution (WHOI), WHOI’s Penzance Endowed Support for Assistant Scientists (JKL), the National Science Foundation (JKL, RKC, RJ, and SS), NOAA’s Bluefin Tuna Research Program (BAM and JKL), the National Aeronautics and Space Administration (BAM and RJ), the Australian Research Council (PLM), and WHOI’s NOAA-supported Cooperative Institute for the North Atlantic Region (RJ and JKL).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Progress in Oceanography 165 (2018): 52-62, doi:10.1016/j.pocean.2018.04.014.
    Description: Small pelagic fishes represent a critical link between zooplankton and large predators. Yet, the taxonomic resolution of the diets of these important fishes is often limited, especially in the Northwest Atlantic. We examined the diets, along with stable isotope signatures, of five dominant small pelagic species of the Northeast US continental shelf ecosystem (Atlantic mackerel Scomber scombrus, Atlantic herring Clupea harengus, alewife Alosa pseudoharengus, blueback herring Alosa aestivalis, and Atlantic butterfish Peprilus triacanthus). Diet analyses revealed strong seasonal differences in most species. Small pelagic fishes predominantly consumed Calanus copepods, small copepod genera (Pseudocalanus/Paracalanus/Clausocalanus), and Centropages copepods in the spring, with appendicularians also important by number for most species. Krill, primarily Meganyctiphanes norvegica, and hyperiid amphipods of the genera Hyperia and Parathemisto were common in the stomach contents of four of the five species in the fall, with hyperiids common in the stomach contents of butterfish in both seasons and krill common in the stomach contents of alewife in both seasons. Depth and region were also found to be sources of variability in the diets of Atlantic mackerel, Atlantic herring, and alewife (region but not depth) with krill being more often in the diet of alewife in more northerly locations, primarily the Gulf of Maine. Stable isotope data corroborate the seasonal differences in diet but overlap of isotopic niche space contrasts that of dietary overlap, highlighting the differences in the two methods. Overall, the seasonal variability and consumer-specific diets of small pelagic fishes are important for understanding how changes in the zooplankton community could influence higher trophic levels.
    Description: Funding for this work was primarily through a US National Science Foundation (NSF) OCE-RIG grant (OCE 1325451) to JKL, with additional support from NOAA through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158 in the form a CINAR Fellow Award (JKL), an NSF Long-term Ecological Research grant for the Northeast US Shelf Ecosystem (OCE 1655686; JKL), a Hendrix College summer research award (ZRK), and an NSF REU-supported Woods Hole Oceanographic Institution Summer Student Fellowship (SLH).
    Keywords: Forage fish ; Zooplankton ; Feeding ; Copepods ; Stable isotopes ; Trophodynamics ; Northeast US Shelf
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Suca, J., Ji, R., Baumann, H., Pham, K., Silva, T., Wiley, D., Feng, Z., & Llopiz, J. Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31(3), (2022): 333– 352, https://doi.org/10.1111/fog.12580.
    Description: Northern sand lance (Ammodytes dubius) are among the most critically important forage fish throughout the Northeast US shelf. Despite their ecological importance, little is known about the larval transport of this species. Here, we use otolith microstructure analysis to estimate hatch and settlement dates of sand lance and then use these measurements to parametrize particle tracking experiments to assess the source–sink dynamics of three prominent sand lance habitats in the Gulf of Maine: Stellwagen Bank, the Great South Channel, and Georges Bank. Our results indicate the pelagic larval duration of northern sand lance lasts about 2 months (range: 50–84 days) and exhibit a broad range of hatch and settlement dates. Forward and backward particle tracking experiments show substantial interannual variability, yet suggest transport generally follows the north to south circulation in the Gulf of Maine region. We find that Stellwagen Bank is a major source of larvae for the Great South Channel, while the Great South Channel primarily serves as a sink for larvae from Stellwagen Bank and Georges Bank. Retention is likely the primary source of larvae on Georges Bank. Retention within both Georges Bank and Stellwagen Bank varies interannually in response to changes in local wind events, while the Great South Channel only exhibited notable retention in a single year. Collectively, these results provide a framework to assess population connectivity among these sand lance habitats, which informs the species' recruitment dynamics and impacts its vulnerability to exploitation.
    Description: Funding came from the National Oceanic and Atmospheric Administration Woods Hole Sea Grant Program (Woods Hole Sea Grant, Woods Hole Oceanographic Institution, NA18OAR4170104, Project No. R/O-57; RJ, HB, and JKL), the Bureau of Ocean Energy Management (IA agreement M17PG0019; DNW, HB, and JKL) including a subaward via the National Marine Sanctuary Foundation (18-11-B-203), and a National Science Foundation Long-term Ecological Research grant for the Northeast US Shelf Ecosystem (OCE 1655686; RJ and JKL). JJS was funded by the National Science Foundation Graduate Research Fellowship program.
    Keywords: Gulf of Maine ; larval retention ; otolith microstructure ; particle tracking ; population connectivity ; sand lance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Goyert, H., Suca, J. J., Coleman, K., Welch, L., Llopiz, J. K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C., & Steinmetz, H. The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 00, (2020): 1-34, doi:10.1111/faf.12445.
    Description: The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.
    Description: This manuscript is the result of follow‐up work stemming from a working group formed at a two‐day multidisciplinary and international workshop held at the Parker River National Wildlife Refuge, Massachusetts in May 2017, which convened 55 experts scientists, natural resource managers and conservation practitioners from 15 state, federal, academic and non‐governmental organizations with interest and expertise in Ammodytes ecology. Support for this effort was provided by USFWS, NOAA Stellwagen Bank National Marine Sanctuary, U.S. Department of the Interior, U.S. Geological Survey, Northeast Climate Adaptation Science Center (Award # G16AC00237), an NSF Graduate Research Fellowship to J.J.S., a CINAR Fellow Award to J.K.L. under Cooperative Agreement NA14OAR4320158, NSF award OCE‐1325451 to J.K.L., NSF award OCE‐1459087 to J.A.R, a Regional Sea Grant award to H.B. (RNE16‐CTHCE‐l), a National Marine Sanctuary Foundation award to P.J.A. (18‐08‐B‐196) and grants from the Mudge Foundation. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the National Oceanographic and Atmospheric Administration, U.S. Fish and Wildlife Service, New England Fishery Management Council and Mid‐Atlantic Fishery Management Council. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Ammodytes ; ecosystem‐based management ; forage fish ; life history ; sand lance ; trophic ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Govindarajan, A. F., Francolini, R. D., Jech, J. M., Lavery, A. C., Llopiz, J. K., Wiebe, P. H., & Zhang, W. Exploring the use of environmental DNA (eDNA) to detect animal taxa in the Mesopelagic Zone. Frontiers in Ecology and Evolution, 9, (2021): 574877, https://doi.org/10.3389/fevo.2021.574877.
    Description: Animal biodiversity in the ocean’s vast mesopelagic zone is relatively poorly studied due to technological and logistical challenges. Environmental DNA (eDNA) analyses show great promise for efficiently characterizing biodiversity and could provide new insight into the presence of mesopelagic species, including those that are missed by traditional net sampling. Here, we explore the utility of eDNA for identifying animal taxa. We describe the results from an August 2018 cruise in Slope Water off the northeast United States. Samples for eDNA analysis were collected using Niskin bottles during five CTD casts. Sampling depths along each cast were selected based on the presence of biomass as indicated by the shipboard Simrad EK60 echosounder. Metabarcoding of the 18S V9 gene region was used to assess taxonomic diversity. eDNA metabarcoding results were compared with those from net-collected (MOCNESS) plankton samples. We found that the MOCNESS sampling recovered more animal taxa, but the number of taxa detected per liter of water sampled was significantly higher in the eDNA samples. eDNA was especially useful for detecting delicate gelatinous animals which are undersampled by nets. We also detected eDNA changes in community composition with depth, but not with sample collection time (day vs. night). We provide recommendations for applying eDNA-based methods in the mesopelagic including the need for studies enabling interpretation of eDNA signals and improvement of barcode reference databases.
    Description: This research was part of the Woods Hole Oceanographic Institution’s Ocean Twilight Zone Project, funded as part of The Audacious Project housed at TED. Funding for the NOAA Ship Henry B Bigelow was provided by NOAA’s Office of Marine and Aviation Operations (OMAO).
    Keywords: Environmental DNA ; Mesopelagic ; Biodiversity ; Metabarcoding ; Zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...