GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 23 (1970), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Epiphytic, IAA-producing bacteria strains were fed with 14C-tryptophan (Try). 14C-Try absorption and, after transfer to a Try-free medium, 14C-IAA output were stated. Using 4 different methods, the 14C-Try containing bacteria were applied to the tips of sterile corn coleoptiles and the ‘diffusible’ auxin collected at the coleoptile bases by means of agar blocks. 14C-IAA was detected in the agar blocks. Sterile coleoptiles the tips of which were wupplied with 14C-Try also deliver some 14C-IAA at their bases, but much less than both sterile coleoptiles supplied with 14C-Try-containing bacteria and nonsterile supplied with 14C-Try.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 23 (1970), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Metabolites of tryptophan were investigated using 2 systems: a bacterial (Peastem homogenates containing the epiphytic bacteria) and a plant system (pea stem sections under sterile conditions).The plant system produces: indolepyruvic acid (IPyA), indoleacetaldehyde (IAAld) indoleacetic acid (IAA), indoleethanol (tryptophol, IAAol), indolecarboxylie acid (ICA), indolecarboxaldehyde (ICAld). Bacteria produce additionally: indoleactic acid (ILA), tryptamine (TNH2) and the unknown Xb and Yb, but IAAld was not detected.A nonacidic inhibitor extract from pea stems decreases the gain of IAA, IPyA, ILA, Yb. It increases the gain of IAAld, IAAol, TNH2, Xb, and (only in the bacterial system) ICA and ICAld. Three sites of inhibitor action are suggested, namely the steps Try → IPyA, TNH2→ IAAld, IAAld → IAA.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sterile plants of maize, pea, and cucumber contain less auxin (extracted with methanol or ether) than nonsterile ones. The auxin content is restored within one day by reinfecting sterile plants (or only the shoots, with roots and culture medium remaining sterile) with epiphytic bacteria strains able to produce IAA or with soaking water of nonsterile seeds. Reinfection with bacteria, strains unable to produce IAA is ineffective. — The possibility of a bacterial auxin production during methanol extraction was excluded.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 21 (1968), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Homogenates of epicotyls or roots of nonsterile pea plants incubated with tryptophan produce IAA within 1 to 4 hours, which was detected by means of the Avena curvature test and thin layer chromatography.Three results prove this short-term IAA production to be mainly caused by epiphytic bacteria: 1) Homogenates of sterile plant parts catalyze a conversion of tryptophan to IAA, a hundredfold lower. 2) Chloramphenicol or streptomycin very actively reduce the IAA gain obtained with nonsterile homogenates. 3) Washing solutions of nonsterile plant parts which do not contain plant enzymes but only epiphytic bacteria, produce IAA from tryptophan, too.IAA synthesis from tryptophan in vitro by enzymes of the pea plant occurs with lower intensity than hitherto known; possibly it is physiologically unimportant. It is discussed to what extent the hitherto existing research work about the IAA biogenesis in higher plants might be incriminated by disregarding tbe rôle of epiphytic bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 23 (1970), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The auxin content (extractable and ‘diffusible’ auxin) of non-sterile corn plants is much more increased by a tryptophan application than the auxin content of sterile plants. This effect is independent of the mode of tryptophan application (spray or supply with the transpiration stream). The epiphytic bacteria settling the shoot surface are responsible for this effect, since in special experiments the rhizosphere was separated from the tryptophan treatment. Sterilized plants which were artificially reinfected with epiphytic IAA-producing bacteria strains behave like non-sterile plants. Non-sterile plants which were superinfected with these bacteria strains have a still higher capacity to convert tryptophan to auxin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 23 (1970), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Metabolites of indoleacetaldehyde (IAAld), indoleethnol (tryptophol, IAAoI), tryptamine (TNH2) and indoleacetamide (IAAm) were investigated using 2 systems; a baeterial (Pea stem homogenates containing the epiphytic bacteria) and a plant system (pea stem sections under sterile conditions). In both systems, indoleacetic acid (IAA), IAAol and indolecarboxylic acid (ICA) are produced from IAAld, and IAA and ICA are produced from IAAol (production of IAAld and ICAld not investigated). In the plant system TNH2 is converted to IAAld,IAA, IAAol and little ICA and ICAld. In the bacterial system TNH2 is converted to IAA, IAAol, the unknown substance Xb, and many ICA and ICAld. Xb is produced from IAAm, too. A nonacidie inhibitor extract from pea stems reduces the IAA gain from IAAld, IAAol and TNH2, and the IAAol and IAAld gain from TNH2; in the bacterial system it increases the IAAol gain from IAAld and the Xb gain from TNH2 and IAAm. Metabolic routes connecting Try, TNH2 and IAA are constructed for the plant tissue and for the epiphytic bacteria, respectively, including 4 sites of inhibitor action.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 22 (1969), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Using hydrocultured pea plants, 109 bacterial strains (42 from shoots) were isolated from shoots, roots, and from the hydroculture medium. 58 different strains (26 from shoots) were able to produce IAA from tryptophan, 15 different strains (7 from shoots) were able lo destroy IAA. (Included are 13 strains possessing both properties.) As far as they could be identified, the IAA-producing and -destroying strains belong to Pseudomonas (by far dominating), Achromobacter, Alcaligenses, Bacillus, and Flavobacterium. The IAA-destroying activity strongly depends on the physiological state of the bacteria and the milieu conditions. Bacterial IAA production (but not IAA-degradation) is supposed to be important for the plant.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 22 (1969), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Under nonsterile conditions, IAA can be extracted from pea stem sections infiltrated with buffer, IAA, or tryptophan. This IAA has microbial origin, since its occurrence is prevented by antibiotics. All infiltrated IAA disappears in the sections. Under sterile conditions, several inhibitors of IAA oxidase prevent the complete disappearance of infiltrated IAA. Some of them permit, by preventing the disappearance of produced IAA, the formation in vivo of extractable IAA amounts from tryptophan. This IAA production is further increased by pyridoxal (phospbate), and by α-ketoglutarate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 23 (1970), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: More “diffusible” auxin is received from nonsterile than from sterile corn coleoptile tips. An artificial reinfection of sterile coleoptiles with epiphytic, IAA-producing bacteria strains does, a superinfection of nonsterile coleoptiles does not increase the auxin amount. The difference between sterile and nonsterile tips persists if diffusion from the coleoptile surface is excluded by covering the surface with a paraffin layer. The greater the distance from the apex, the higher becomes the superiority of nonsterile tips. An artificial bacterial contamination of the contact face between tip and receiver agar block, or addition of glucose and tryptophan to the agar block, do not influence the received auxin amount. Consequently the additional, bacteria-produced auxin delivered by the nonsterile tip is not produced at the cut surface or in the agar but is present in the tissues of the coleoptile tip.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 17 (1964), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...