GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-08
    Description: Los Humeros volcanic complex (Eastern Trans Mexican Volcanic belt) is one of the three most important geothermal fields in Mexico and is currently producing electricity (ca. 90 MW). It is therefore pertinent to constrain the magma chamber characteristics, such as its depth, and the magmatic evolution of the complex in order to better define the superficial geothermal activity. In this paper we present the first geochemical data (major and trace elements) for 15 silicate melt inclusions and their five host rocks from Los Humeros volcanic complex. We constrained the evolution of the volcanic complex by coupling X-ray spectrometry, ICP-MS, microprobe, X-ray microtomography and NanoSIMS analyses together with thermodynamical modeling on both whole rocks and silicate melt inclusions. A ponding reservoir located within an interval betwwen 5 and 13 km at depth is evidenced by silicate melt inclusions entrapment pressures. This ponding depth's interval is in agreement with previous studies by thermal modeling, resistivity and geobaromatry done in the same area. The geothermal activity of Los Humeros volcanic area is expected to be the result of the cooling of the magma in the shallow chamber. A large geochemical variability, in less than 1 Ma, is demonstrated by trace and volatile element compositions evolution through time. Subduction contamination is expected into the mantle source with the highest contamination event at 69 Ka, during the second caldera event of Los Humeros volcanic complex.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-12
    Description: The Cretaceous Twihinate carbonatite in the Moroccan Sahara is a ~ 5 km diameter ring-shaped intrusion made of an inner core preserving sparse occurrences of medium- to coarse-grained calcite carbonatite encircled by a ring of vuggy siliceous breccia. The Twihinate carbonatite is enriched in large ion lithophile elements (Cs, Rb, Ba, U and Th) and light rare earth elements (LREE), but shows negative anomalies in high field strength elements (particularly Ta, Zr, Hf and Ti). Stable and radiogenic isotope ratios vary in the range of δ13Cv-PDB = −10.5 to −1.6‰, δ18OV-SMOW = 6.4–28.3‰, initial 87Sr/86Sr = 0.7034–0.7043 (εSri between −14.5 and − 1.8), 143Nd/144Nd = 0.51282–0.51283 (εNdi between 2.8 and 3.6), 206Pb/204Pbi = 19.52–23.78, 207Pb/204Pbi = 15.56–15.69 and 208Pb/204Pbi = 38.69–39.02). Altogether, these isotopic compositions reflect compositional mantle heterogeneity, and are interpreted to reflect partial melting of heterogenous mantle sources with a potential eclogite component in an intraplate, rift-controlled tectonic setting. From a geodynamic perspective, the time span ascribed to age emplacement of Twihinate carbonatite shortly follows the Upper Jurassic hyper-extension event which ultimately resulted in mantle exhumation and subsequent onset of drifting in the Central Atlantic Ocean and Maghrebian Tethys.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-07
    Description: Decades of geochemical monitoring at active crater lakes worldwide have confirmed that variations in major elements and physico-chemical parameters are useful to detect changes in volcanic activity. However, it is still arduous to identify precursors of single phreatic eruptions. During the unrest phase of 2009–2016, at least 679 phreatic eruptions occurred at the hyperacid and hypersaline crater lake Laguna Caliente of Poás volcano (Costa Rica). In this study, we investigate the temporal variations of Rare Earth Elements (REE) dissolved in Laguna Caliente in order to 1) scrutinize if they can be used as a new geochemical tool to monitor changes of phreatic activity at hyperacid crater lakes and 2) identify the geochemical processes responsible for the variations of REE concentrations in the lake. The total concentration of REE varies from 950 to 2,773 μg kg−1. (La/Pr)N-local rock ratios range from 0.93 to 1.35, and Light REE over Heavy REE (LREE/HREE)N-local rock ratios vary from 0.71 to 0.95. These same parameters vary in relation to significant changes in phreatic activity; in particular, the (La/Pr)N-local rock ratio increases as phreatic activity increases, while that of (LREE/HREE)N-local rock decreases when phreatic activity increases. REE concentrations and their ratios were compared with the variations of major elements and physico-chemical parameters of the lake. Calcium versus (La/Pr)N-local rock and versus (LREE/HREE)N-local rock ratios show different trends compared to the other major elements (Na, K, Mg, Al, Fe, SO4, and Cl). Moreover, a higher loss of Ca (up to 2,835 ppm) in lake water was found with respect to the loss of Al, K, and Na. This loss of Ca is argued to be due to gypsum precipitation, a process corroborated by the mass balance calculation simulating the precipitation of gypsum and the contemporaneous removal of REE from the lake water. The observed relations between REE, changes in phreatic activity, and the parameters commonly used for the monitoring of hyperacid volcanic lakes encourage investigating more on the temporal and cause-effect relationship between REE dynamics and changes in phreatic activity at crater lake-bearing volcanoes.
    Description: Published
    Description: 716970
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Rare Earth Elements ; Poas Volcano ; phreatic eruptions ; geochemical monitoring ; hyperacid volcanic lakes ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-21
    Description: This work presents hydrochemical results for groundwater and dissolved gas samples collected from a thermal and cold aquifer in the Juchipila Basin, in southern Sierra Madre Occidental, central Mexico. Thermal springs in the Juchipila Basin reach temperatures of 60 ◦C, these manifestations are not related to recent or active volcanism as are all the known geothermal fields in Mexico. The thermal waters (〉32 ◦C) are Na-HCO3 and Na-SO4 type, with an anomalous concentration of F, B, Li, and As. Their chemistry likely results from water-rock interaction processes. The cold waters (〈32 ◦C) have a Ca-HCO3 composition typical of recent infiltration and shallow flow, but they have an anomalous concentration of NO3. The δ2H and δ18O indicate a common meteoric source for the warm and cold water plotting along an evaporation line. The waters have higher CO2 and He concentrations than the air-saturated water. The helium composition is mainly atmospheric and terrigenous with a mantle helium contribution of up to 14%. This suggests that faults affecting the region are deeply rooted, permitting mantle helium uprise. Geothermometry gives mean reservoir temperatures of 58–102 ◦C. Based on these results, we propose a model of hydrothermal circulation in the Juchipila Basin, in which rainwater infiltrates deeply through the graben edges fault system, dissolves ions and crustal helium, incorporates mantle helium, while heated by the geothermal gradient, and eventually surges and mixes with the cold, shallow aquifer along faults cutting the whole succession within the graben.
    Description: Published
    Description: 102076
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: Hydrogeochemical processes ; Helium isotopes ; Water stable isotopes ; Unconventional geothermal system ; Mexico
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-21
    Description: The San Dimas district is a world-class Ag/Au deposit, developed as a telescoped Eocene-Oligocene Ag/Au mineralization located in the Sierra Madre Occidental (SMO) of western Mexico. San Dimas exhibits multiple mineralization events during different magmatic and tectonic episodes from Late Cretaceous to early Oligocene. The well-preserved magmatic-hydrothermal system provides an excellent opportunity to determine the source of silver and gold, the evolution of the hydrothermal fluids, and the controls on the mineralization precipitation. Mineralogical, fluid inclusions (FI), stable and noble gases isotope analyses suggest that the San Dimas deposit consist of two different mineralization styles: 1) Ag-dominant epithermal Eocene veins that occurred at temperatures up to ~350 °C developed at ca. 2–3 km depth, associated to the final stages of intrusion of the Piaxtla batholith, with FI dominated by a crustal component, and 2) epithermal low sulfidation Au-dominant Oligocene veins which were developed at 250 °C, at shallower depths (〈 1 km), associated to the feeding fractures of rhyolitic domes developed at the end of the main ignimbrite flare up of the SMO, with FI showing crustal fluids variably mixed with a magmatic component. Our results highlight the importance of a multidisciplinary approach, such as field observations, geochronological and geochemical studies, to better understand the complexity of the hydrothermal magmatic processes involved in the formation of many Mexican ore deposits and their proper classification.
    Description: Published
    Description: 103427
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: San Dimas Ag–Au district ; fluid inclusions ; D-O stable isotope ; Noble gas ; Telescoped ore deposits ; Solid Earth ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-02
    Description: The physicochemical and isotopic characteristics of groundwater and dissolved gas of central Mexico provide valuable information about the geologic and tectonic context of the area. Low–high-enthalpy manifestations (up to 98 °C in springs and more than 100 °C in geothermal wells) are distributed within the San Juan del Río, Querétaro, and Celaya hydrologic basins, located at the boundary between the current Mexican magmatic arc and an extensional continental area with intraplate volcanism called Mesa Central Province. Groundwaters in the study area represent a mixture between the cold water end-member with a Ca2+-Mg2+-HCO3- composition and a hydrothermal end-member enriched in Na+ , K+ , SO4 2−, and Cl-. Cold and hot groundwaters δ2 H and δ18O plot along the same evaporation lines and do not exhibit a magmatic input. Dissolved and free gas do not show a typical volcanic composition signature. He and Ne isotope composition provide evidence of an important contribution of non-atmospheric noble gases. Although helium composition mainly has a crustal origin (21–83%), the mantellic contribution (1–39%) is higher than expected for an area lacking recent volcanism. A volatile-rich magma aging at depth was discarded as the source of this mantellic helium signature but points out a recent mantellic contribution. Thus, we propose that mantellic helium comes from the sublithospheric mantle into the shallow crust through the highly permeable tectonic boundaries between the geologic provinces, namely the N−S Taxco−San Miguel de Allende and ChapalaTula fault systems. Mantellic helium flow rates through these fault systems were estimated to have values ranging from 0.1 m/yr to 2.9 m/yr. This He flux range implies that aside from subduction, mantle volatile degassing enhanced by crustal fault systems is the main degassing process in the region studied.
    Description: Published
    Description: 335–347
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-20
    Description: Volcanic lakes are complex natural systems and their chemical composition is related to a myriad of processes. The chemical composition of major, minor, Rare Earth Elements (REE) and physico-chemical parameters at the hyperacid crater lake of Rincón de la Vieja volcano (Costa Rica) are here investigated during February 2013–August 2014. The study of the lake chemical composition allows to identify the main geochemical processes occurring in the lake and to track the changes in the volcanic activity, both important for active volcanoes monitoring. The total REE concentration ( REE) dissolved in the crater lake varies from 2.7 to 3.6 mg kg−1 during the period of observation. REE in the water lake samples normalized to the average volcanic local rock (REEN-local rock) are depleted in light REE (LREE). On the contrary REEN-local rock in the solids precipitated (mainly gypsum/anhydrite), from lake water samples in laboratory at 22°C, are enriched in LREE. The low variability of (La/Pr)N-local rock and (LREE/ HREE)N-local rock ratios (0.92–1.07 and 0.66–0.81, respectively) in crater lake waters is consistent with the low phreatic activity (less than 10 phreatic eruptions in 2 years) observed during the period of observation. This period of low activity precedes the unrest started in 2015, thus, it could be considered as a pre-unrest, characterized by infrequent phreatic eruptions. No clear changes in the REE chemistry are associated with the phreatic eruption occurred at mid- 2013. The results obtained investigating water-rock interaction processes at theRincón de la Vieja crater lake show that rock dissolution and mineral precipitation/ dissolution are the main processes that control the variability of cations composition over time. In particular, precipitation and dissolution of gypsum and alunite are responsible for the variations of REE in the waters. Despite the low variations of (La/Pr)N-local rock and (LREE/HREE)N-local rock ratios, this study allows to suggest that REE can be used, together with major elements, as practical tracers of water-rock interaction processes and mineral precipitation/ dissolution at active hyperacid crater lakes over time, also during periods of quiescence and low phreatic activity.
    Description: Published
    Description: 1197568
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Rare earth elements ; hyperacid crater lake ; geochemical monitoring ; sulfate minerals ; water-rock interaction
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...