GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Speichergestein ; Reaktionskinetik
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (168 Seiten, 17,19 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 03G0871 A-E , Verbundnummer 01176216 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 115 (1993), S. 155-164 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Two experiments using cylindrical samples of a dolomite-quartz rock were carried out in a conventional hydrothermal apparatus for the forward reaction: 1 dolomite + 2 quartz = 1 diopside + 2 CO2, in order to compare the mechanism and the kinetics with results from experiments using mineral powders of dolomite and quartz at the same P-T-X conditions. Experimental conditions were as follows: total pressure 500 MPa; temperature 680° C (overstepping 65° C); CO2 content of the fluid phase, consisting of carbon dioxide and water, was nearly 90 mol%; the fluid/rock ratio was 1:37, and the H2O/rock ratio was about 1:740; run duration was 92 days. Scanning electron microscope (SEM) examination of a polished axial section of the rock cylinders after the run, using back-scattered electrons (BSE), shows that the reaction produced corona textures. The diopside crystals nucleate and grow exclusively on dolomite surfaces adjacent to quartz grains, i.e. in regions where there is intimate contact between the reactants. The dolomite matrix, in contrast, is diopside free. A concept of microsystems is used to compare directly the rock cylinder results with those from runs done with mineral powders. The microsystems, which consist of quartz, dolomite and diopside, are connected by the intergranular space which is filled by the fluid phase. The SEM analysis of the rock cylinders indicates a dissolution-crystallization mechanism operating in the microsystems; this is consistent with the results of experiments using dolomite quartz powders (Lüttge et al. 1989). It can be demonstrated that reaction kinetics in mineral powder runs are interface controlled as long as the newly formed diopside crystals do not cover the dolomite surfaces completely (Lüttge and Metz 1991 c). This result is applicable to each microsystem of the rock cylinder, since the reaction mechanism and the resulting textures are the same in both kinds of experiments. The reaction is much slower outside the microsystems, i.e. in the dolomite matrix but in the close vicinity of the quartz grains. At these places, the reaction is controlled by the transport of Si-species in the CO2-rich fluid phase filling the intergranular space. The reaction is absent in quartz-free regions of the dolomite matrix. Calculations and measurements of the extent of reaction progress in both kinds of experiments give results of the same order of magnitude: the conversion, and therefore the reaction rate, differs by less than a factor of two. The conclusion is that there are no differences, in principle, concerning mechanisms, rate controls, rates, and resulting textures between rock cylinder experiments, and mineral powder experiments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Lüttge, Andreas (2015): Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore. ACS Applied Materials & Interfaces, 7(32), 17857-17865, https://doi.org/10.1021/acsami.5b04281
    Publication Date: 2023-03-03
    Description: The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.
    Keywords: Center for Marine Environmental Sciences; Height; MARUM; Time in hours; Vertical scanning interferometry (VSI)
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-13
    Description: The corrosion and degradation of materials, such as pipeline steel, have a strong effect on both the environment and the economy. The quantification of these processes can therefore provide important information needed to manage their impact. In this study, a concept for the characterization and quantification of corrosion is demonstrated on API X70 steel immersed in 3.5 wt.% NaCl solution. Due to the difficulty of quantifying corrosion rates, e.g., through single mean values, a unique system is applied that directly couples Raman spectroscopy with vertical scanning interferometry to assess the physical and chemical aspects of steel corrosion kinetics. Vertical scanning interferometry allows the quantification of the topographical evolution of corrosion product formation and material dissolution in combination with the direct measurements of the respective rates. The Raman spectroscopy provides additional information about the (mineral) phases. Rate variations ranging from uniform corrosion to areas of high pit densities are quantified and analyzed in rate maps and subsequently visualized in rate spectra. The rate distribution is classified into different domains and pitting rates. Thus, a comprehensive quantitative assessment of the characteristic corrosion behavior is discussed.
    Keywords: File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 52 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fischer, Cornelius; Arvidson, Rolf S; Lüttge, Andreas (2012): How predictable are dissolution rates of crystalline material? Geochimica et Cosmochimica Acta, 98, 177-185, https://doi.org/10.1016/j.gca.2012.09.011
    Publication Date: 2023-05-12
    Description: The large discrepancy between field and laboratory measurements of mineral reaction rates is a long-standing problem in earth sciences, often attributed to factors extrinsic to the mineral itself. Nevertheless, differences in reaction rate are also observed within laboratory measurements, raising the possibility of intrinsic variations as well. Critical insight is available from analysis of the relationship between the reaction rate and its distribution over the mineral surface. This analysis recognizes the fundamental variance of the rate. The resulting anisotropic rate distributions are completely obscured by the common practice of surface area normalization. In a simple experiment using a single crystal and its polycrystalline counterpart, we demonstrate the sensitivity of dissolution rate to grain size, results that undermine the use of "classical" rate constants. Comparison of selected published crystal surface step retreat velocities (Jordan and Rammensee, 1998) as well as large single crystal dissolution data (Busenberg and Plummer, 1986) provide further evidence of this fundamental variability. Our key finding highlights the unsubstantiated use of a single-valued "mean" rate or rate constant as a function of environmental conditions. Reactivity predictions and long-term reservoir stability calculations based on laboratory measurements are thus not directly applicable to natural settings without a probabilistic approach. Such a probabilistic approach must incorporate both the variation of surface energy as a general range (intrinsic variation) as well as constraints to this variation owing to the heterogeneity of complex material (e.g., density of domain borders). We suggest the introduction of surface energy spectra (or the resulting rate spectra) containing information about the probability of existing rate ranges and the critical modes of surface energy.
    Keywords: Calcite dissolution rate; Center for Marine Environmental Sciences; Experiment_single_calcite_crystal; Frequency; MARUM; Surface height; Vertical scanning interferometer (VSI), Zemetrics ZeMapper (Tucson AZ)
    Type: Dataset
    Format: text/tab-separated-values, 6744 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-09-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Chemistry Society
    In:  Chemical Reviews, 107 (2). pp. 342-381.
    Publication Date: 2020-07-27
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...