GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Klawonn, Isabell; Eichner, Meri J; Wilson, Samuel T; Moradi, Nasrollah; Thamdrup, Bo; Kümmel, Steffen; Gehre, Matthias; Khalili, Arzhang; Grossart, Hans-Peter; Karl, David Michael; Ploug, Helle (2020): Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies. The ISME Journal, 14(2), 399-412, https://doi.org/10.1038/s41396-019-0514-9
    Publication Date: 2023-01-13
    Description: Trichodesmium is an important dinitrogen (N~2~)-fixing cyanobacterium in marine ecosystems. Recent nucleic acid analyses indicate that Trichodesmium colonies with their diverse epibionts support various nitrogen (N) transformations beyond N~2~-fixation. However, rates of these transformations and concentration gradients of N-compounds in Trichodesmium colonies remain largely unresolved. We combined isotope-tracer incubations, micro-profiling, and numeric modelling to explore carbon fixation, N-cycling processes, as well as oxygen, ammonium and nitrate concentration gradients in individual field-sampled Trichodesmium colonies. Colonies were net-autotrophic, with carbon and N~2~-fixation occurring mostly at day-time. Ten percent of the fixed N was released as ammonium after 12-hour incubations. Nitrification was not detectable but nitrate consumption was high when nitrate was added. The consumed nitrate was partly reduced to ammonium, while denitrification was insignificant. Thus, the potential N-transformation network was characterized by fixed N gain and recycling processes rather than denitrification. Oxygen concentrations within colonies were 60–200% air-saturation. Moreover, our modelling predicted steep concentration gradients, with up to 6-fold higher ammonium concentrations, and nitrate depletion in the colony centre compared to the ambient seawater. These gradients created a chemically heterogeneous microenvironment, presumably facilitating diverse microbial metabolisms in millimetre-sized Trichodesmium colonies.
    Keywords: Computer-simulated concentration profiles; File format; File name; File size; Microsensor concentration profiles; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 12 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: We revisited the applicability of two fungal cell wall markers, Calcofluor White (CFW) and wheat germ agglutinin (WGA), for the direct visualization of chytrid infections on phytoplankton in laboratory-maintained isolates and field-sampled communities. Using a comprehensive set of chytrid–phytoplankton model pathosystems, we verified the staining pattern on diverse morphological structures of chytrids via fluorescence microscopy. Empty sporangia were stained most effectively, followed by encysted zoospores and im-/mature sporangia, while the staining success was more variable for rhizoids, stalks, and resting spores. In a few instances, the staining was unsuccessful (mostly with WGA), presumably due to insufficient cell fixation, gelatinous cell coatings, and multilayered cell walls. CFW and WGA staining could be done in Utermöhl chambers or on polycarbonate filters, but CFW staining on filters seemed less advisable due to high background fluorescence. To visualize chytrids, 1 μg dye mL−1 was sufficient (but 5 μg mL−1 are recommended). Using a dual CFW–WGA staining protocol, we detected multiple, mostly undescribed chytrids in two natural systems (freshwater and coastal), while falsely positive or negative stained cells were well detectable. As a proof-of-concept, we moreover conducted imaging flow cytometry, as a potential high-throughput technology for quantifying chytrid infections. Our guidelines and recommendations are expected to facilitate the detection of chytrid epidemics and to unveil their ecological and economical imprint in natural and engineered aquatic systems. The uploaded data included complementary information for Figure 2 and Figure S6, and image analyses (data of fluorescence intensity shown in Figure 4)
    Keywords: Binary Object; Binary Object (File Size); Binary Object (MD5 Hash); Binary Object (Media Type); Calcofluor White; Epifluorescence microscopy; File content; Imaging flow cytometry; Microbial pathosystems; Wheat germ agglutinin
    Type: Dataset
    Format: text/tab-separated-values, 4 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Our understanding of the small-scale processes that drive global biogeochemical cycles and the Earth’s climate is dependent on accurate estimations of interfacial diffusive fluxes to and from biologically-active substrates in aquatic environments. In this study, we present a novel model approach for accurate calculations of diffusive fluxes of dissolved gases, nutrients, and solutes from concentration profiles measured across the substrate-water interfaces using microsensors. The model offers a robust computational scheme for automatized determination of the interface position and enables precise calculations of the interfacial diffusive fluxes simultaneously. In contrast to other methods, the new approach is not restricted to any particular substrate geometry, does not require a priori determination of the interface position for the flux calculation, and, thus, reduces the uncertainties in calculated fluxes arising from partly subjective identification of the interface position. In addition, it is robust when applied to measured profiles containing scattered data points and insensitive to reasonable decreases of the spatial resolution of the data points. The latter feature allows for significantly reducing measurement time which is a crucial factor for in situ experiments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Phytoplankton forms the base of aquatic food webs and element cycling in diverse aquatic systems. The fate of phytoplankton-derived organic matter, however, often remains unresolved as it is controlled by complex, interlinked remineralization and sedimentation processes. We here investigate a rarely considered control mechanism on sinking organic matter fluxes: fungal parasites infecting phytoplankton. We demonstrate that bacterial colonization is promoted 3.5-fold on fungal-infected phytoplankton cells in comparison to non-infected cells in a cultured model pathosystem (diatom Synedra, fungal microparasite Zygophlyctis, and co-growing bacteria), and even ≥17-fold in field-sampled populations (Planktothrix, Synedra, and Fragilaria). Additional data obtained using the Synedra–Zygophlyctis model system reveals that fungal infections reduce the formation of aggregates. Moreover, carbon respiration is 2-fold higher and settling velocities are 11–48% lower for similar-sized fungal-infected vs. non-infected aggregates. Our data imply that parasites can effectively control the fate of phytoplankton-derived organic matter on a single-cell to single-aggregate scale, potentially enhancing remineralization and reducing sedimentation in freshwater and coastal systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...