GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 19 (1988), S. 89-110 
    ISSN: 0066-4162
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1009
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-515X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anthropogenic food and energy production extensively mobilize reactive nitrogen (N) in the watershed of the North Atlantic Ocean (NAO). There is wide spread N distribution by both hydrologic and atmospheric processes within the watershed of the NAO, resulting in reactive N accumulation in terrestrial systems. Net denitrification in most estuaries and continental shelves exceeds the amount of N supplied to the shelves by rivers and requires a supply of nitrate from the open ocean. Thus riverine N is only transported to the open ocean in a few areas with the flow from a few major rivers (e.g., Amazon). Atmospheric N deposition to the open ocean has increased and may increase the productivity of the surface ocean. In addition, as a consequence of increased Fe deposition to the open ocean (due in part to anthropogenic processes), the rate of biological N-fixation may have increased resulting in N accumulation in the ocean. Phosphorus (P) is also mobilized by anthropogenic processes (primarily food production). Relative to N, more of the P is transported across the shelf to the open ocean from both estuaries and major rivers. There are several consequences of the increased availability of N and P that are unique to each element. However, the control on primary productivity in both coastal and open ocean ecosystems is dependent on a complex and poorly understood interaction between N and P mobilization and availability.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-515X
    Keywords: anthropogenic ; atmospheric deposition ; eutrophication ; fertilizer ; nitrogen ; nitrogen budget ; nitrogen fixation ; N:P ratio ; phosphorus ; pristine ; rivers ; temperate ; tropical
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr−1 out of a total for the entire North Atlantic region of 13.1 Tg yr−1 . On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km−2 yr−1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S. Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-30
    Description: The identification and quantification of methane emissions from natural gas production has become increasingly important owing to the increase in the natural gas component of the energy sector. An instrumented aircraft platform was used to identify large sources of methane and quantify emission rates in southwestern PA in June 2012....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...