GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1573-515X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anthropogenic food and energy production extensively mobilize reactive nitrogen (N) in the watershed of the North Atlantic Ocean (NAO). There is wide spread N distribution by both hydrologic and atmospheric processes within the watershed of the NAO, resulting in reactive N accumulation in terrestrial systems. Net denitrification in most estuaries and continental shelves exceeds the amount of N supplied to the shelves by rivers and requires a supply of nitrate from the open ocean. Thus riverine N is only transported to the open ocean in a few areas with the flow from a few major rivers (e.g., Amazon). Atmospheric N deposition to the open ocean has increased and may increase the productivity of the surface ocean. In addition, as a consequence of increased Fe deposition to the open ocean (due in part to anthropogenic processes), the rate of biological N-fixation may have increased resulting in N accumulation in the ocean. Phosphorus (P) is also mobilized by anthropogenic processes (primarily food production). Relative to N, more of the P is transported across the shelf to the open ocean from both estuaries and major rivers. There are several consequences of the increased availability of N and P that are unique to each element. However, the control on primary productivity in both coastal and open ocean ecosystems is dependent on a complex and poorly understood interaction between N and P mobilization and availability.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract As gas phase atmospheric ammonia reacts with acidic aerosol particles it affects the chemical, physical, and optical properties of the particles. A knowledge of the source strengths of NH3 is useful in determining the effect of NH3 on aerosol properties on a regional basis. Here, an attempt is made to determine the direction and magnitude of the air/sea flux of ammonia for the North Atlantic Basin from both measured and modeled seawater and atmospheric ammonia concentrations. Previously reported measured seawater concentrations range from less than 30 to 4600 nM with the highest concentrations reported for the Caribbean Sea, the North Sea, and the Belgium coast. Measured atmospheric ammonia concentrations range from 2 to 500 nmol m−3 with the largest values occurring over the Sargasso Sea, the Caribbean Sea, and the North Sea. For comparison to the measurements, seawater ammonia concentrations were calculated by the Hamburg Model of the Ocean Carbon Cycle (HAMOCC3). HAMOCC3 open ocean values agree well with the limited number of reported measured concentrations. Calculated coastal values are lower than those measured, however, due to the coarse resolution of the model. Atmospheric ammonia concentrations were calculated by the Acid Deposition Model of the Meteorological Synthesizing Center (MSC-W) and by the global 3-dimensional model Moguntia. The two models predict similar annually averaged values but are about an order of magnitude lower than the measured concentrations. Over the North Sea and the NE Atlantic, the direction and magnitude of the air/sea ammonia flux calculated from MSC-W and Moguntia agree within the uncertainty of the calculations. Flux estimates derived from measured data are larger in both the positive and negative direction than the model derived values. The discrepancies between the measured and modeled concentrations and fluxes may be a result of sampling artifacts, inadequate chemistry and transport schemes in the models, or the difficulty in comparing point measurements to time-averaged model values. Sensitivity tests were performed which indicate that, over the range of values expected for the North Atlantic, the accuracy of the calculated flux depends strongly on seawater and atmospheric ammonia concentrations. Clearly, simultaneous and accurate measurements of seawater and atmospheric ammonia concentrations are needed to reduce the uncertainty of the flux calculations, validate the model results, and characterize the role of oceanic ammonia emissions in aerosol processing and nitrogen cycling for the North Atlantic.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Atmospheric Chemistry and Physics, Copernicus Publications, 10, pp. 5759-5783
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...