GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Paleoclimatology Cretaceous ; Paleoclimatology Atlantic Ocean ; Paleoclimatology France ; Shale Atlantic Ocean ; Shale France ; Submarine geology ; Vocontian Basin ; Dissertation ; Hochschulschrift ; Vocontischer Trog ; Kreide ; Schwarzschiefer ; Paläoozeanographie ; Vocontischer Trog ; Paläoklimatologie ; Nannofossil ; Stabiles Isotop ; Vocontischer Trog ; Mittelkreide ; Schwarzschiefer ; Paläoozeanographie ; Vocontischer Trog ; Mittelkreide ; Schwarzschiefer ; Paläoklimatologie ; Vocontischer Trog ; Mittelkreide ; Schwarzschiefer ; Nannofossil ; Vocontischer Trog ; Mittelkreide ; Schwarzschiefer ; Isotop ; Atlantischer Ozean ; Mittelkreide ; Schwarzschiefer ; Paläoozeanographie
    Type of Medium: Book
    Pages: V, 114 S. , Ill., graph. Darst., Kt.
    Series Statement: Tuebinger mikropalaeontologische Mitteilungen 27
    RVK:
    Language: English
    Note: Zugl.: Tübingen, Univ., Diss., 2001
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Limestone–marl alternations are usually directly interpreted to reflect cyclic palaeoenvironmental signals. However, uncertainty in such interpretations stems from the differential diagenesis that most limestone–marl alternations have undergone. Differential diagenesis results in markedly different alterations between limestones and marls and in the loss of comparability of many measurable parameters. For an unequivocal interpretation of the origin of rhythmic alternations, diagenetically robust parameters or parameters that clearly indicate the degree of diagenetic bias are required. The present study uses a multiproxy approach (independent biotic, sedimentary and geochemical parameters) in order to unravel the palaeoenvironmental signal recorded in Valanginian (Early Cretaceous) limestone–marl alternations from the Blake-Bahama Basin (DSDP site 391). Using this approach, terrestrial and marine influences can be distinguished, changes in nutrient levels estimated and prediagenetic differences in the non-carbonate fraction constrained. Surprisingly, no systematic variations in any of these parameters were observed between limestone and marl layers, implying that none of these was directly responsible for the formation of the rhythmic alternation. Hence, none of the current models of sedimentary formation of limestone–marl rhythmites is applicable here. Calcareous nannofossils are equally well preserved in limestone and marl layers, ruling out their dissolution in marl layers as a source of the calcite cement in the limestone beds. Sr values of 700–900 p.p.m. indicate that aragonite may have been present in the original, pelagic sediment. The assumption of fine-grained sedimentary aragonite imported from nearby carbonate platforms as the source of the cement would explain a number of otherwise enigmatic features in these rhythmites, including the source of the calcite cement observed in the limestones, the equally good preservation of calcareous nannofossils in limestones and marls and the higher concentration of calcareous nannofossils in marl layers. The study demonstrates that examination of diagenetically inert parameters or parameters in which diagenetic effects can be filtered can yield unexpected results. Clearly, careful analysis of such parameters needs to be undertaken in order to make reliable palaeoenvironmental interpretations from rhythmite successions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Extensive black shale deposits formed in the Early Cretaceous South Atlantic, supporting the notion that this emerging ocean basin was a globally important site of organic carbon burial. The magnitude of organic carbon burial in marine basins is known to be controlled by various tectonic, oceanographic, hydrological, and climatic processes acting on different temporal and spatial scales, the nature and relative importance of which are poorly understood for the young South Atlantic. Here we present new bulk and molecular geochemical data from an Aptian–Albian sediment record recovered from the deep Cape Basin at Deep Sea Drilling Project (DSDP) Site 361, which we combine with general circulation model results to identify driving mechanisms of organic carbon burial. A multimillion-year decrease (i.e., Early Aptian–Albian) in organic carbon burial, reflected in a lithological succession of black shale, gray shale, and red beds, was caused by increasing bottom water oxygenation due to abating hydrographic restriction via South Atlantic–Southern Ocean gateways. These results emphasize basin evolution and ocean gateway development as a decisive primary control on enhanced organic carbon preservation in the Cape Basin at geological timescales (〉 1 Myr). The Early Aptian black shale sequence comprises alternations of shales with high (〉 6 %) and relatively low (∼ 3.5 %) organic carbon content of marine sources, the former being deposited during the global Oceanic Anoxic Event (OAE) 1a, as well as during repetitive intervals before and after OAE 1a. In all cases, these short-term intervals of enhanced organic carbon burial coincided with strong influxes of sediments derived from the proximal African continent, indicating closely coupled climate–land–ocean interactions. Supported by our model results, we show that fluctuations in weathering-derived nutrient input from the southern African continent, linked to changes in orbitally driven humidity and aridity, were the underlying drivers of repetitive episodes of enhanced organic carbon burial in the deep Cape Basin. These results suggest that deep marine environments of emerging ocean basins responded sensitively and directly to short-term fluctuations in riverine nutrient fluxes. We explain this relationship using the lack of wide and mature continental shelf seas that could have acted as a barrier or filter for nutrient transfer from the continent into the deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...