GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 66 (2000), S. 13-31 
    ISSN: 1573-5079
    Keywords: photosynthesis ; photoacoustic ; optoacoustic ; spectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photoacoustic methods offer unique capabilities for photosynthesis research. Phenomena that are readily observed by photoacoustics include the storage of energy by electron transport, oxygen evolution by leaf tissue at microsecond time resolution, and the conformational changes of photosystems caused by charge separation. Despite these capabilities, photoacoustic methods have not been widely exploited in photosynthesis research. One factor that has contributed to their slow adoption is uncertainty in the interpretation of photoacoustic signals. Careful experimentation is resolving this uncertainty, however, and technical refinements of photoacoustic methods continue to be made. This review provides an overview of the application of photoacoustics to the study of photosynthesis with an emphasis on the resolution of uncertainties in the interpretation of photoacoustic signals. Recent developments in photoacoustic technology are also presented, including a microphotoacoustic spectrometer, gas permeable photoacoustic cells, the use of photoacoustics to monitor phytoplankton populations, and the use of photoacoustics to study protein dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: cyanobacteria ; cyclic photophosphorylation ; nutrient deprivation ; photoacoustic spectroscopy ; photoinhibition ; Photosystem I
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When the cyanobacterium Synechococcus sp. Strain PCC 7942 is deprived of an essential macronutrient such as nitrogen, sulfur or phosphorus, cellular phycobiliprotein and chlorophyll contents decline. The level of β-carotene declines proportionately to chlorophyll, but the level of zeaxanthin increases relative to chlorophyll. In nitrogen- or sulfur-deprived cells there is a net degradation of phycobiliproteins. Otherwise, the declines in cellular pigmentation are due largely to the diluting effect of continued cell division after new pigment synthesis ceases and not to net pigment degradation. There was also a rapid decrease in O2 evolution when Synechococcus sp. Strain PCC 7942 was deprived of macronutrients. The rate of O2 evolution declined by more than 90% in nitrogen- or sulfur-deprived cells, and by approximately 40% in phosphorus-deprived cells. In addition, in all three cases the fluorescence emissions from Photosystem II and its antennae were reduced relative to that of Photosystem I and the remaining phycobilisomes. Furthermore, state transitions were not observed in cells deprived of sulfur or nitrogen and were greatly reduced in cells deprived of phosphorus. Photoacoustic measurements of the energy storage capacity of photosynthesis also showed that Photosystem II activity declined in nutrient-deprived cells. In contrast, energy storage by Photosystem I was unaffected, suggesting that Photosystem I-driven cyclic electron flow persisted in nutrient-deprived cells. These results indicate that in the modified photosynthetic apparatus of nutrient-deprived cells, a much larger fraction of the photosynthetic activity is driven by Photosystem I than in nutrient-replete cells.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Exposure of the red alga Porphyra perforata or leaves of Phytolacca americana and Echinodorus sp. to white light equivalent to full sunlight for short periods induced large decreases of variable fluorescence measured at 695 nm at 77K. This change was not produced by photoinhibition but rather appeared to result from an inorease in the rate constant of radiationless transition in the reaction centers of photosystem II. It is proposed that this increase is related to the formation of the high energy state which serves as a photoprotective mechanism in plants.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 27 (1991), S. 151-156 
    ISSN: 1573-5079
    Keywords: energy storage ; gas permeable photoacoustic cell ; O2 evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A photoacoustic cell assembly is described that is permeable to CO2 and other gases but not water vapor. As a replacement for the usually employed solid cover, this cell uses a cover containing a small fritted glass disk that holds a small piece of 6.4 μm Teflon film against the sample. With the above arrangement it was possible to increase the rate of O2 evolution measured photoacoustically about 3 times in Zea mays leaves and about 1.7 times in Phaseolus vulgaris leaves upon adding CO2 to the gas stream. The extent of energy storage was also enhanced with supplemental CO2 in Zea and Ulva but less so in Phaseolus. The maximum improvements of photosynthetic activities were obtained when the gas stream contained 2.5–5% CO2. These high concentrations were presumably necessary as the result of a high resistance to diffusion through the gas-permeable cover.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 36 (1993), S. 149-168 
    ISSN: 1573-5079
    Keywords: ATP ; chlororespiration ; cyclic/linear electron transport ; cyclic photophosphorylation in vivo ; environmental stress ; photoacoustics ; photoinhibition ; Photosystem I ; Photosystem I specialization ; state transitions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recently, a number of techniques, some of them relatively new and many often used in combination, have given a clearer picture of the dynamic role of electron transport in Photosystem I of photosynthesis and of coupled cyclic photophosphorylation. For example, the photoacoustic technique has detected cyclic electron transport in vivo in all the major algal groups and in leaves of higher plants. Spectroscopic measurements of the Photosystem I reaction center and of the changes in light scattering associated with thylakoid membrane energization also indicate that cyclic photophosphorylation occurs in living plants and cyanobacteria, particularly under stressful conditions. In cyanobacteria, the path of cyclic electron transport has recently been proposed to include an NAD(P)H dehydrogenase, a complex that may also participate in respiratory electron transport. Photosynthesis and respiration may share common electron carriers in eukaryotes also. Chlororespiration, the uptake of O2 in the dark by chloroplasts, is inhibited by excitation of Photosystem I, which diverts electrons away from the chlororespiratory chain into the photosynthetic electron transport chain. Chlororespiration in N-starved Chlamydomonas increases ten fold over that of the control, perhaps because carbohydrates and NAD(P)H are oxidized and ATP produced by this process. The regulation of energy distribution to the photosystems and of cyclic and non-cyclic phosphorylation via state 1 to state 2 transitions may involve the cytochrome b 6-f complex. An increased demand for ATP lowers the transthylakoid pH gradient, activates the b 6-f complex, stimulates phosphorylation of the light-harvesting chlorophyll-protein complex of Photosystem II and decreases energy input to Photosystem II upon induction of state 2. The resulting increase in the absorption by Photosystem I favors cyclic electron flow and ATP production over linear electron flow to NADP and ‘poises’ the system by slowing down the flow of electrons originating in Photosystem II. Cyclic electron transport may function to prevent photoinhibition to the photosynthetic apparatus as well as to provide ATP. Thus, under high light intensities where CO2 can limit photosynthesis, especially when stomates are closed as a result of water stress, the proton gradient established by coupled cyclic electron transport can prevent over-reduction of the electron transport system by increasing thermal de-excitation in Photosystem II (Weis and Berry 1987). Increased cyclic photophosphorylation may also serve to drive ion uptake in nutrient-deprived cells or ion export in salt-stressed cells. There is evidence in some plants for a specialization of Photosystem I. For example, in the red alga Porphyra about one third of the total Photosystem I units are engaged in linear electron transfer from Photosystem II and the remaining two thirds of the Photosystem I units are specialized for cyclic electron flow. Other organisms show evidence of similar specialization. Improved understanding of the biological role of cyclic photophosphorylation will depend on experiments made on living cells and measurements of cyclic photophosphorylation in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5079
    Keywords: cyanobacteria ; cyclic electron transport ; photoacoustic spectroscopy ; photoadaptation ; photoinhibition ; Photosystem I
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosystem I-driven cyclic electron transport was measured in intact cells of Synechococcus sp PCC 7942 grown under different light intensities using photoacoustic and spectroscopic methods. The light-saturated capacity for PS I cyclic electron transport increased relative to chlorophyll concentration, PS I concentration, and linear electron transport capacity as growth light intensity was raised. In cells grown under moderate to high light intensity, PS I cyclic electron transport was nearly insensitive to methyl viologen, indicating that the cyclic electron supply to PS I derived almost exclusively from a thylakoid dehydrogenase. In cells grown under low light intensity, PS I cyclic electron transport was partially inhibited by methyl viologen, indicating that part of the cyclic electron supply to PS I derived directly from ferredoxin. It is proposed that the increased PSI cyclic electron transport observed in cells grown under high light intensity is a response to chronic photoinhibition.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...