GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Toluene is anoxically degraded to CO2 by the denitrifying bacterium Thauera aromatica. The initial reaction in this pathway is the addition of fumarate to the methyl group of toluene, yielding benzylsuccinate as the first intermediate. We purified the enzyme catalysing this reaction, benzylsuccinate synthase (EC 4.1.99-), and studied its properties. The enzyme was highly oxygen sensitive and contained a redox-active flavin cofactor, but no iron centres. The native molecular mass was 220 kDa; four subunits of 94 (α), 90 (α′), 12 (β) and 10 kDa (γ) were detected on sodium dodecyl sulphate (SDS) gels. The N-terminal sequences of the α- and α′-subunits were identical, suggesting a C-terminal degradation of half of the α-subunits to give the α′-subunit. The composition of native enzyme therefore appears to be α2β2γ2. A 5 kb segment of DNA containing the genes for the three subunits of benzylsuccinate synthase was cloned and sequenced. The masses of the predicted gene products correlated exactly with those of the subunits, as determined by electrospray mass spectrometry. Analysis of the derived amino acid sequences revealed that the large subunit of the enzyme shares homology to glycyl radical enzymes, particularly near the predicted radical site. The highest similarity was observed with pyruvate formate lyases and related proteins. The radical-containing subunit of benzylsuccinate synthase is oxygenolytically cleaved at the site of the glycyl radical, producing the α′-subunit. The predicted cleavage site was verified using electrospray mass spectrometry. In addition, a gene coding for an activating protein catalysing glycyl radical formation was found. The four genes for benzylsuccinate synthase and the activating enzyme are organized as a single operon; their transcription is induced by toluene. Synthesis of the predicted gene products was achieved in Escherichia coli in a T7-promotor/polymerase system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 166 (1998), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The genes for a two-component regulatory system of the denitrifying toluene-degrading bacterium Thauera aromatica were identified immediately upstream of the genes for benzylsuccinate synthase (bssDCAB), the first enzyme involved in anaerobic toluene metabolism. The genes apparently encode the regulators of toluene catabolic enzymes and were therefore termed tdiSR (for toluene degradation inducing sensor and regulator). The tdiR gene product was overproduced in Escherichia coli and assayed for binding to a DNA fragment containing the 5′ region of the bss operon. We observed specific DNA binding with cell extracts containing overproduced TdiR, but not with control extracts. The tdiSR genes are almost identical to two genes of Thauera strain T1, which have not been assigned a function so far. In addition, the derived gene products share similarity with regulators of toluene and styrene catabolic pathways in aerobic Pseudomonas species, and with the tutCB gene products of Thauera strain T1. The latter have previously been implicated in regulating anaerobic toluene metabolism. Our data suggest that toluene catabolism under aerobic and anaerobic conditions is regulated by similar, but distinct two-component systems.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 22 (1998), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The capacity of some bacteria to metabolize hydrocarbons in the absence of molecular oxygen was first recognized only about ten years ago. Since then, the number of hydrocarbon compounds shown to be catabolized anaerobically by pure bacterial cultures has been steadily increasing. This review summarises the current knowledge of the bacterial isolates capable of anaerobic mineralization of hydrocarbons, and of the biochemistry and molecular biology of enzymes involved in the catabolic pathways of some of these substrates. Several alkylbenzenes, alkanes or alkenes are anaerobically utilized as substrates by several species of denitrifying, ferric iron-reducing and sulfate-reducing bacteria. Another group of anaerobic hydrocarbon degrading bacteria are ‘proton reducers’ that depend on syntrophic associations with methanogens. For two alkylbenzenes, toluene and ethylbenzene, details of the biochemical pathways involved in anaerobic mineralization are known. These hydrocarbons are initially attacked by novel, formerly unknown reactions and oxidized further to benzoyl-CoA, a common intermediate in anaerobic catabolism of many aromatic compounds. Toluene degradation is initiated by an unusual addition reaction of the toluene methyl group to the double bond of fumarate to form benzylsuccinate. The enzyme catalyzing this first step has been characterized at both the biochemical and molecular level. It is a unique type of glycyl-radical enzyme, an enzyme family previously represented only by pyruvate-formate lyases and anaerobic ribonucleotide reductases. Based on the nature of benzylsuccinate synthase as a radical enzyme, a hypothetical reaction mechanism for the addition of toluene to fumarate is proposed. The further catabolism of benzylsuccinate to benzoyl-CoA and succinyl-CoA appears to occur via reactions of a modified β-oxidation pathway. Ethylbenzene is first oxidized at the methylene carbon to 1-phenylethanol and subsequently to acetophenone, which is then carboxylated to 3-oxophenylpropionate and converted to benzoyl-CoA and acetyl-CoA. Anaerobic mineralization of alkanes involves an oxygen-independent oxidation to fatty acids, followed by β-oxidation. In one strain of an alkane-mineralizing sulfate-reducing bacterium, the activation appears to proceed via a chain-elongation, possibly by addition of a C1-group at the terminal methyl group of the alkane. Finally, aspects concerned with the regulation and ecological significance of anaerobic hydrocarbon catabolic pathways are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 155 (1991), S. 221-228 
    ISSN: 1432-072X
    Keywords: Selenopolypeptide ; Selenated tRNAs ; Enterobacteriaceae ; UGA decoding ; Functional compatibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several species of Enterobacteriaceae were investigated for their ability to synthesise selenium-containing macromolecules. Selenated tRNA species as well as selenated polypeptides were formed by all organisms tested. Two selenopolypeptides could be identified in most of the organisms which correspond to the 80 kDa and 110 kDa subunits of the anaerobicaly induced formate dehydrogenase isoenzymes of E coli. In those organisms possessing both isoenzymes, their synthesis was induced in a mutually exclusive manner dependent upon whether nitrate was present during anaerobic growth. The similarity of the 80 kDa selenopolypeptide among the different species was assessed by immunollogical and genetic analyses. Antibodies raised against the 80 kDa selenopolypeptide from E. coli cross-reacted with an 80 kDa polypeptide in those organisms which exhibited fermentative formate dehydrogenase activity. These organisms also contained genes which hydridised with the fdhF gene from E. coli. In an attempt to identify the signals responsible for incorporation of selenium into the selenopolypeptides in these organisms we cloned a portion of the fdhF gene homologue from Enterobacter aerogenes. The nucleotide sequence of the cloned 723 bp fragment was determined and it was shown to contain an in-frame TGA (stop) codon at the position corresponding to that present in the E. coli gene. This fragment was able to direct incorporation of selenocysteine when expressed in the heterologous host, E. coli. Moreover, the E. coli fdhF gene was expressed in Salmonella typhimurium, Serratia marcescens and Proteus mirabilis, indicating a high degree of convervation of the selenating system throughout the enterobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 168 (1997), S. 421-427 
    ISSN: 1432-072X
    Keywords: Key wordsEscherichia coli ; Selenoproteins ; Selenocysteine ; Selenomethionine ; Monoselenophosphate synthetase ; Cysteine biosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The path of unspecific selenium incorporation into proteins was studied in Escherichia coli mutants blocked in the biosynthesis of cysteine and methionine or altered in its regulation. Selenium incorporation required all enzymatic steps of cysteine biosynthesis except sulfite reduction, indicating that intracellular reduction of selenite occurs nonenzymatically. Cysteine (but not methionine) supplementation prevented unspecific incorporation of selenium by repressing cysteine biosynthesis. On the other hand, when the biosynthesis of cysteine was derepressed in regulatory mutants, selenium was incorporated to high levels. These findings and the fact that methionine auxotrophic strains still displayed unspecific incorporation show that selenium incorporation into proteins in E. coli occurs mainly as selenocysteine. These findings also provide information on the labeling conditions for incorporating 75Se only and specifically into selenoproteins.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Key words Phototrophic bacteria ; Photoheterotrophic growth ; Aromatic hydrocarbons ; Toluene ; Benzylsuccinate ; 16S rRNA sequence analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The capacity of anoxygenic phototrophic bacteria to utilize aromatic hydrocarbons was investigated in enrichment cultures with toluene. When mineral medium with toluene (provided in an inert carrier phase) was inoculated with activated sludge and incubated under infrared illumination (〉 750 nm), a red-to-brownish culture developed. Agar dilution series indicated the dominance of two types of phototrophic bacteria. One type formed red colonies, had rod-shaped cells with budding division, and grew on benzoate but not on toluene. The other type formed yellow-to-brown colonies, had oval cells, and utilized toluene and benzoate. One strain of the latter type, ToP1, was studied in detail. Sequence analysis of the 16S rRNA gene and DNA-DNA hybridization indicated an affiliation of strain ToP1 with the species Blastochloris sulfoviridis, a member of the α-subclass of Proteobacteria. However, the type strain (DSM 729) of Blc. sulfoviridis grew neither on toluene nor on benzoate. Light-dependent consumption of toluene in the presence of carbon dioxide and formation of cell mass by strain ToP1 were demonstrated in quantitative growth experiments. Strain ToP1 is the first phototrophic bacterium shown to utilize an aromatic hydrocarbon. In the supernatant of toluene-grown cultures and in cell-free extracts incubated with toluene and fumarate, the formation of benzylsuccinate was detected. These findings indicate that the phototrophic bacterium activates toluene anaerobically by the same mechanism that has been reported for denitrifying and sulfate-reducing bacteria. The natural abundance of phototrophic bacteria with the capacity for toluene utilization was examined in freshwater habitats. Counting series revealed that up to around 1% (1.8 × 105 cells per gram dry mass of sample) of the photoheterotrophic population cultivable with acetate grew on toluene.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-27
    Description: Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl) succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O-2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...