GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-20
    Description: This data set was collected from incubations of sediment collected from the intertidal sandbank Janssand, behind the back barrier island Spiekeroog, in the German Wadden Sea. The rate of oxygen consumption (microsensor), hydrogen accumulation (GC), iron accumulation (ferrozine, chlorometric), and sulfate reduction (35S sulfate + acid-chromium distillation) were all measured in constantly mixed slurries, with and without the ROS-removing enzymes superoxide dismutase and catalase. It additionally includes depth profiles of oxygen and hydrogen peroxide in cores, determined with amperometric microsensors.
    Keywords: File content; H2O2; intertidal permeable sediments; Iron reduction; Jans1-5; MULT; Multiple investigations; Office Open XML Workbook; Reactive Oxygen Species; sand flat; sulfate reduction; Wadden Sea
    Type: Dataset
    Format: text/tab-separated-values, 2 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 64 (2000), S. 809-811 
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: 2 . Our results indicate that four purges at 0.05 MPa, followed by filling with N2, resulted in negligible O2 levels in this transporter.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Microbiology of metal ions. , ed. by Poole, R. K. Advances in Microbial Physiology, 70 . Elsevier, Cambridge, Massachusetts, pp. 37-83, 47 pp. ISBN 978-0-12-812386-7
    Publication Date: 2021-10-04
    Description: The importance of manganese in the physiology of marine microbes, the biogeochemistry of the ocean and the health of microbial communities of past and present is emerging. Manganese is distributed widely throughout the global ocean, taking the form of an essential antioxidant (Mn2 +), a potent oxidant (Mn3 +) and strong adsorbent (Mn oxides) sequestering disproportionately high levels of trace metals and nutrients in comparison to the surrounding seawater. Manganese is, in fact, linked to nearly all other elemental cycles and intricately involved in the health, metabolism and function of the ocean's microbiome. Here, we briefly review the diversity of microbes and pathways responsible for the transformation of Mn within the three Mn pools and their distribution within the marine environment. Despite decades of interrogation, we still have much to learn about the players, mechanisms and consequences of the Mn cycle, and new and exciting discoveries are being made at a rapid rate. What is clear is the dynamic and ever-inspiring complexity of reactions involving Mn, and the acknowledgement that microorganisms are the catalytic engine driving the Mn cycle.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 4 (2013): 262, doi:10.3389/fmicb.2013.00262.
    Description: Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O−2) both of biogenic and abiogenic origin as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV) oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide (H2O2), a product of the reaction of O−2 with Mn(II), inhibits the oxidation process presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.
    Description: This project was supported by the National Science Foundation, grants EAR-1245919/1025077 (awarded to Colleen M. Hansel and Bettina M. Voelker), and by the Radcliffe Institute for Advanced Study at Harvard University (through a fellowship to Bettina M. Voelker).
    Keywords: Manganese oxidation ; Manganese oxides ; Superoxide ; Reactive oxygen species ; Mn(III) complexes ; Organic ligands
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
    Description: Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment.
    Description: This work was supported by the National Science Foundation (www.nsf.gov), grant numbers EAR-1249489 and CBET-1336496, both awarded to CMH. Personal support for CAZ was also provided by Harvard University (www.harvard.edu) and by a Ford Foundation (www.fordfoundation.org) Predoctoral Fellowship administered by the National Academies.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 232 (2018): 244-264, doi:10.1016/j.gca.2018.04.030.
    Description: The seasonal depletion of stratospheric ozone over the Southern Hemisphere allows abnormally high doses of ultraviolet radiation (UVR) to reach surface waters of the West Antarctic Peninsula (WAP) in the austral spring, creating a natural laboratory for the study of lipid photooxidation in the shallow mixed layer of the marginal ice zone. The photooxidation of lipids under such conditions has been identified as a significant source of stress to microorganisms, and short-chain fatty acids altered by photochemical processes have been found in both marine aerosols and sinking marine particle material. However, the biogeochemical impact of lipid photooxidation has not been quantitatively compared at ecosystem scale to the many other biological and abiotic processes that can transform particulate organic matter in the surface ocean. We combined results from field experiments with diverse environmental data, including high-resolution, accurate-mass HPLC-ESI-MS analysis of lipid extracts and in situ measurements of ultraviolet irradiance, to address several unresolved questions about lipid photooxidation in the marine environment. In our experiments, we used liposomes — nonliving, cell-like aggregations of lipids — to examine the photolability of various moieties of the intact polar diacylglycerol (IP-DAG) phosphatidylcholine (PC), a structural component of membranes in a broad range of microorganisms. We observed significant rates of photooxidation only when the molecule contained the polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). As the DHA-containing lipid was oxidized, we observed the steady ingrowth of a diversity of oxylipins and oxidized IP-DAG; our results suggest both the intact IPDAG the degradation products were amenable to heterotrophic assimilation. To complement our experiments, we used an enhanced version of a new lipidomics discovery software package to identify the lipids in water column samples and in several diatom isolates. The galactolipid digalactosyldiacylglycerol (DGDG), the sulfolipid sulfoquinovosyldiacylglycerol (SQDG) and the phospholipids PC and phosphatidylglycerol (PG) accounted for the majority of IP-DAG in the water column particulate (≥ 0.2 μm) size fraction; between 3.4 and 5.3 % of the IP-DAG contained fatty acids that were both highly polyunsaturated (i.e., each containing ≥ 5 double bonds). Using a broadband apparent quantum yield (AQY) that accounted for direct and Type I (i.e., radical-mediated) photooxidation of PUFA-containing IP-DAG, we estimated that 0.7 ± 0.2 μmol IP-DAG m-2 d-1 (0.5 ± 0.1 mg C m-2 d-1) were oxidized by photochemical processes in the mixed layer. This rate represented 4.4 % (range, 3-21 %) of the mean bacterial production rate measured in the same waters immediately following the retreat of the sea ice. Because our liposome experiments were not designed to account for oxidation by Type II photosensitized processes that often dominate in marine phytodetritus, our rate estimates may represent a sizeable underestimate of the true rate of lipid photooxidation in the water column. While production of such diverse oxidized lipids and oxylipins has been previously observed in terrestrial plants and mammals in response to biological stressors such as disease, we show here that a similar suite of molecules can be produced via an abiotic process in the environment and that the effect can be commensurate in magnitude with other ecosystem-scale biogeochemical processes.
    Description: J.R.C. acknowledges support from a U.S. Environmental Protection Agency (EPA) STAR Graduate Fellowship (Fellowship Assistance agreement FP-91744301-0). This work was also supported by U.S. National Science Foundation awards OCE-1059884 and PLR-1543328 to B.A.S.V.M., NSF award PLR- 1341479 to A. M., the Gordon and Betty Moore Foundation through grant GBMF3301 to B.A.S.V.M., and a WHOI Ocean Ventures Fund award to J.R.C.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Society for Applied Microbiology for personal use, not for redistribution. The definitive version was published in Environmental Microbiology Reports 6 (2014): 226-238, doi:10.1111/1758-2229.12116.
    Description: Microbe-mediated soil uptake is the largest and most uncertain variable in the budget of atmospheric hydrogen (H2). The diversity and ecophysiological role of soil microorganisms that can consume low atmospheric abundances of H2 with high-affinity [NiFe]-hydrogenases is unknown. We expanded the library of atmospheric H2-consuming strains to include four soil Harvard Forest Isolate (HFI) Streptomyces spp., Streptomyces cattleya, and Rhodococcus equi by assaying for high-affinity hydrogenase (hhyL) genes and quantifying H2 uptake rates. We find that aerial structures (hyphae and spores) are important for Streptomyces H2 consumption; uptake was not observed in Streptomyces griseoflavus Tu4000 (deficient in aerial structures) and was reduced by physical disruption of Streptomyces sp. HFI8 aerial structures. H2 consumption depended on the life cycle stage in developmentally distinct actinobacteria: Streptomyces sp. HFI8 (sporulating) and R. equi (non-sporulating, non-filamentous). Strain HFI8 took up H2 only after forming aerial hyphae and sporulating, while R. equi only consumed H2 in the late exponential and stationary phase. These observations suggest that conditions favoring H2 uptake by actinobacteria are associated with energy and nutrient limitation. Thus, H2 may be an important energy source for soil microorganisms inhabiting systems in which nutrients are frequently limited.
    Description: L.K.M. was supported by from the following funding sources: NSF Graduate Research Fellowship, multiple grants from NASA to MIT for the Advanced Global Atmospheric Gases Experiment (AGAGE), MIT Center for Global Change Science, MIT Joint Program on the Science and Policy of Global Change, MIT Martin Family Society of Fellows for Sustainability, MIT Ally of Nature Research Fund, MIT William Otis Crosby Lectureship, and MIT Warren Klein Fund. D. R. was funded through MIT Undergraduate Research Opportunities Program (UROP) with support from the Lord Foundation and Jordan J. Baruch Fund (1947) and was supported by the Harvard Forest REU Program.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 596, doi:10.3389/fmicb.2015.00596.
    Description: Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.
    Description: This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0644491 awarded to AV.
    Keywords: Mercury ; Metacinnabar ; Sulfur chemosynthesis ; Thiobacillus ; Thiosulfate ; Mercury sulfide dissolution ; Sulfur metabolism ; Sulfur oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Chemistry 4 (2016): 5, doi:10.3389/fchem.2016.00005.
    Description: Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O−2) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O−2 were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O−2 and H2O2 was examined by measuring recovery of O−2 and H2O2 added to the influent medium. O−2 production rates ranged from undetectable to 7.3 × 10−16 mol cell−1 h−1, while H2O2 production rates ranged from undetectable to 3.4 × 10−16 mol cell−1 h−1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O−2 in light than dark, even when the organisms were killed, indicating that O−2 is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O−2 production rates was consistent with production of H2O2 solely through dismutation of O−2 for T. oceanica, while T. pseudonana made much more H2O2 than O−2. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94–100% H2O2; 10–80% O−2) were consistently higher than those for live cultures (65–95% H2O2; 10–50% O−2). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O−2 decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are closely related, and as a function of light conditions.
    Description: This research was supported by NSF grant OCE-1131734/1246174 to BV and CH.
    Keywords: Reactive oxygen species ; Superoxide ; Hydrogen peroxide ; Diatoms ; Culture
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2016. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 61 (2016): 1188–1200, doi:10.1002/lno.10266.
    Description: Reactive oxygen species (ROS) are key players in the health and biogeochemistry of the ocean and its inhabitants. The vital contribution of microorganisms to marine ROS levels, particularly superoxide, has only recently come to light, and thus the specific biological sources and pathways involved in ROS production are largely unknown. To better understand the biogenic controls on ROS levels in tropical oligotrophic systems, we determined rates of superoxide production under various conditions by natural populations of the nitrogen-fixing diazotroph Trichodesmium obtained from various surface waters in the Sargasso Sea. Trichodesmium colonies collected from eight different stations all produced extracellular superoxide at high rates in both the dark and light. Colony density and light had a variable impact on extracellular superoxide production depending on the morphology of the Trichodesmium colonies. Raft morphotypes showed a rapid increase in superoxide production in response to even low levels of light, which was not observed for puff colonies. In contrast, superoxide production rates per colony decreased with increasing colony density for puff morphotypes but not for rafts. These findings point to Trichodesmium as a likely key source of ROS to the surface oligotrophic ocean. The physiological and/or ecological factors underpinning morphology-dependent controls on superoxide production need to be unveiled to better understand and predict superoxide production by Trichodesmium and ROS dynamics within marine systems.
    Description: Major support for this work was provided by NSF OCE- 1246174 to CMH, NSF OCE-1332912 to STD and NSF OCE-13329898 to BASVM.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...