GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-01
    Description: Foraminifera are an ecologically important group of modern heterotrophic amoeboid eukaryotes whose naked and testate ancestors are thought to have evolved ~1 Ga ago. However, the single-chambered agglutinated tests of these protists appear in the fossil record only after ca. 580 Ma, coinciding with the appearance of macroscopic and mineralized animals. Here we report the discovery of small, slender tubular microfossils in the Sturtian (ca. 716–635 Ma) cap carbonate of the Rasthof Formation in Namibia. The tubes are 200–1300 µm long and 20–70 µm wide, and preserve apertures and variably wide lumens, folds, constrictions, and ridges. Their sometimes flexible walls are composed of carbonaceous material and detrital minerals. This combination of morphologic and compositional characters is also present in some species of modern single-chambered agglutinated tubular foraminiferans, and is not found in other agglutinated eukaryotes. The preservation of possible early Foraminifera in the carbonate rocks deposited in the immediate aftermath of Sturtian low-latitude glaciation indicates that various morphologically modern protists thrived in microbially dominated ecosystems, and contributed to the cycling of carbon in Neoproterozoic oceans much before the rise of complex animals.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Society for Applied Microbiology for personal use, not for redistribution. The definitive version was published in Environmental Microbiology Reports 6 (2014): 226-238, doi:10.1111/1758-2229.12116.
    Description: Microbe-mediated soil uptake is the largest and most uncertain variable in the budget of atmospheric hydrogen (H2). The diversity and ecophysiological role of soil microorganisms that can consume low atmospheric abundances of H2 with high-affinity [NiFe]-hydrogenases is unknown. We expanded the library of atmospheric H2-consuming strains to include four soil Harvard Forest Isolate (HFI) Streptomyces spp., Streptomyces cattleya, and Rhodococcus equi by assaying for high-affinity hydrogenase (hhyL) genes and quantifying H2 uptake rates. We find that aerial structures (hyphae and spores) are important for Streptomyces H2 consumption; uptake was not observed in Streptomyces griseoflavus Tu4000 (deficient in aerial structures) and was reduced by physical disruption of Streptomyces sp. HFI8 aerial structures. H2 consumption depended on the life cycle stage in developmentally distinct actinobacteria: Streptomyces sp. HFI8 (sporulating) and R. equi (non-sporulating, non-filamentous). Strain HFI8 took up H2 only after forming aerial hyphae and sporulating, while R. equi only consumed H2 in the late exponential and stationary phase. These observations suggest that conditions favoring H2 uptake by actinobacteria are associated with energy and nutrient limitation. Thus, H2 may be an important energy source for soil microorganisms inhabiting systems in which nutrients are frequently limited.
    Description: L.K.M. was supported by from the following funding sources: NSF Graduate Research Fellowship, multiple grants from NASA to MIT for the Advanced Global Atmospheric Gases Experiment (AGAGE), MIT Center for Global Change Science, MIT Joint Program on the Science and Policy of Global Change, MIT Martin Family Society of Fellows for Sustainability, MIT Ally of Nature Research Fund, MIT William Otis Crosby Lectureship, and MIT Warren Klein Fund. D. R. was funded through MIT Undergraduate Research Opportunities Program (UROP) with support from the Lord Foundation and Jordan J. Baruch Fund (1947) and was supported by the Harvard Forest REU Program.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Saunders, J. K., McIlvin, M. R., Dupont, C. L., Kaul, D., Moran, D. M., Horner, T., Laperriere, S. M., Webb, E. A., Bosak, T., Santoro, A. E., & Saito, M. A. Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 119(37),(2022): e2200014119, https://doi.org/10.1073/pnas.2200014119.
    Description: Enzymes catalyze key reactions within Earth’s life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.
    Description: Funding for this research was provided by the Gordon and Betty Moore Foundation (grants 3782 and 8453), the US NSF (NSF grants OCE-1924554, 2123055, 2125063, 2048774, and 2026933), the Center for Chemical Currencies on a Microbial Planet (NSF grant OCE-2019589), and the US NIH General Medicine (grant GM135709-01A1). J.K.S. was supported by a NASA Postdoctoral Program Fellowship with the NASA Astrobiology Program, administered by Universities Space Research Association under contract with NASA. A.E.S. was supported by the Sloan Foundation, the Simons Foundation, and NSF grant OCE-1437310. A portion of this research used resources at the US Department of Energy JGI sponsored by the Office of Biological and Environmental Research and operated under contract DE-AC02-05CH11231 (JGI). C.L.D. and D.K. were supported by NSF grants OCE-1558453 and OCE-2049299. T.H. was supported by NSF grant OCE-2023456.
    Keywords: Marine microbial ecology ; Metaproteomics ; Mesopelagic ; Nitrification ; Methylotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...