GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Iglesias-Rodriguez, Debora; Halloran, P R; Rickaby, Rosalind E M; Hall, Ian R; Colmenero-Hidalgo, Elena; Gittins, J R; Green, Darryl R H; Tyrrell, Toby; Gibbs, Samantha J; von Dassow, Peter; Rehm, E; Armbrust, E Virginia; Boessenkool, K P (2008): Phytoplankton calcification in a high-CO2 world. Science, 320(5874), 336-340, https://doi.org/10.1126/science.1154122
    Publikationsdatum: 2024-03-15
    Beschreibung: Ocean acidification in response to rising atmospheric CO2 partial pressures is widely expected to reduce calcification by marine organisms. From the mid-Mesozoic, coccolithophores have been major calcium carbonate producers in the world's oceans, today accounting for about a third of the total marine CaCO3 production. Here, we present laboratory evidence that calcification and net primary production in the coccolithophore species Emiliania huxleyi are significantly increased by high CO2 partial pressures. Field evidence from the deep ocean is consistent with these laboratory conclusions, indicating that over the past 220 years there has been a 40% increase in average coccolith mass. Our findings show that coccolithophores are already responding and will probably continue to respond to rising atmospheric CO2 partial pressures, which has important implications for biogeochemical modeling of future oceans and climate.
    Schlagwort(e): Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate of calcium carbonate per algae cell; Calcite saturation state; Calcium carbonate in cell; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Counting; Element analyser, Thermo Finnigan flash EA 1112; Emiliania huxleyi; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Flow cytometry; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Laboratory strains; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon, per cell; Particulate organic carbon production per cell; Pelagos; pH; Phytoplankton; Potentiometric titration, VINDTA (marianda); Primary production/Photosynthesis; Salinity; Single species; Temperature, water
    Materialart: Dataset
    Format: text/tab-separated-values, 1237 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2015-08-07
    Beschreibung: The oceans currently take up around a quarter of the carbon dioxide (CO2) emitted by human activity. While stored in the ocean, this CO2 is not influencing Earth's radiation budget; the ocean CO2 sink therefore plays an important role in mitigating global warming. CO2 uptake by the oceans is heterogeneous, with the subpolar North Atlantic being the strongest CO2 sink region. Observations over the last 2 decades have indicated that CO2 uptake by the subpolar North Atlantic sink can vary rapidly. Given the importance of this sink and its apparent variability, it is critical that we understand the mechanisms behind its operation. Here we explore the combined natural and anthropogenic subpolar North Atlantic CO2 uptake across a large ensemble of Earth System Model simulations, and find that models show a peak in sink strength around the middle of the century after which CO2 uptake begins to decline. We identify different drivers of change on interannual and multidecadal timescales. Short-term variability appears to be driven by fluctuations in regional seawater temperature and alkalinity, whereas the longer-term evolution throughout the coming century is largely occurring through a counterintuitive response to rising atmospheric CO2 concentrations. At high atmospheric CO2 concentrations the contrasting Revelle factors between the low latitude water and the subpolar gyre, combined with the transport of surface waters from the low latitudes to the subpolar gyre, means that the subpolar CO2 uptake capacity is largely satisfied from its southern boundary rather than through air–sea CO2 flux. Our findings indicate that: (i) we can explain the mechanisms of subpolar North Atlantic CO2 uptake variability across a broad range of Earth System Models; (ii) a focus on understanding the mechanisms behind contemporary variability may not directly tell us about how the sink will change in the future; (iii) to identify long-term change in the North Atlantic CO2 sink we should focus observational resources on monitoring lower latitude as well as the subpolar seawater CO2; (iv) recent observations of a weakening subpolar North Atlantic CO2 sink may suggest that the sink strength has peaked and is in long-term decline.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2012-03-06
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...