GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1520-6041
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (10). pp. 1543-1558.
    Publikationsdatum: 2020-02-06
    Beschreibung: Lithogenic material deposited as dust is one of the major sources of trace metals to the ocean, particularly in the tropical and subtropical Atlantic. On the other hand, it can also act as a scavenging surface for iron. Here we studied this double role of lithogenic material in the marine iron cycle by adding a new scheme for describing particle dynamics into a global biogeochemistry and ecosystem model including particle aggregation and disaggregation of two particle size classes and scavenging on both organic and lithogenic particles. Considering the additional scavenging of iron on lithogenic particles, the modeled dissolved iron concentration is reduced significantly in the tropical and subtropical Atlantic, bringing the model much closer to observations. This underlines the necessity to consider the double role of dust particles as iron source and sink in studies on the marine iron cycle in high dust regions and with changing dust fluxes.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 8 (10). pp. 3025-3039.
    Publikationsdatum: 2012-12-12
    Beschreibung: The trace metal iron (Fe) is now routinely included in state-of-the-art ocean general circulation and biogeochemistry models (OGCBMs) because of its key role as a limiting nutrient in regions of the world ocean important for carbon cycling and air-sea CO2 exchange. However, the complexities of the seawater Fe cycle, which impact its speciation and bioavailability, are simplified in such OGCBMs due to gaps in understanding and to avoid high computational costs. In a similar fashion to inorganic carbon speciation, we outline a means by which the complex speciation of Fe can be included in global OGCBMs in a reasonably cost-effective manner. We construct an Fe speciation model based on hypothesised relationships between rate constants and environmental variables (temperature, light, oxygen, pH, salinity) and assumptions regarding the binding strengths of Fe complexing organic ligands and test hypotheses regarding their distributions. As a result, we find that the global distribution of different Fe species is tightly controlled by spatio-temporal environmental variability and the distribution of Fe binding ligands. Impacts on bioavailable Fe are highly sensitive to assumptions regarding which Fe species are bioavailable and how those species vary in space and time. When forced by representations of future ocean circulation and climate we find large changes to the speciation of Fe governed by pH mediated changes to redox kinetics. We speculate that these changes may exert selective pressure on phytoplankton Fe uptake strategies in the future ocean. In future work, more information on the sources and sinks of ocean Fe ligands, their bioavailability, the cycling of colloidal Fe species and kinetics of Fe-surface coordination reactions would be invaluable. We hope our modeling approach can provide a means by which new observations of Fe speciation can be tested against hypotheses of the processes present in governing the ocean Fe cycle in an integrated sense
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-04-23
    Beschreibung: In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (〈1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect of increasing phytoplankton biomass” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 112 . C09017.
    Publikationsdatum: 2018-04-19
    Beschreibung: An eddy-permitting circulation model of the Atlantic Ocean was used to study the effect of mesoscale processes on the uptake and spreading of anthropogenic CO2 and CFC-11. A comparison with a coarser-resolution model version shows anthropogenic tracer distributions with qualitatively similar patterns, but much more structure (e.g., stronger longitudinal gradients) in the eddy-permitting model, improving the agreement with observations. The better representation of the formation of water masses such as subpolar-mode water in the eddy-permitting model has an influence on the distribution of anthropogenic CO2 over density classes, but no influence on the total inventory taken up. In the subpolar Atlantic, the air-sea flux of CFC-11 is dominated by deep-water formation, while the air-sea flux of anthropogenic CO2 extends over a larger part of the subpolar gyre and has a clear association with North Atlantic surface currents. An in-depth analysis of the mechanisms shaping this distribution showed that the entrainment of water from below into the mixed layer determines the structure in the subpolar North Atlantic, whereas the temporal correlation between surface heat fluxes and mixed-layer depth is more important in the subtropical gyre. The northward, integrated heat and anthropogenic CO2 transports in midlatitudes are closely correlated on seasonal to interannual timescales. This has implications for using the ongoing monitoring arrays of the thermohaline circulation for estimation of the transport of anthropogenic CO2.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    In:  [Poster] In: ASLO 2006 Summer Meeting, 04.06.-09.06, Victoria, British Columbia, Canada .
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-07-06
    Beschreibung: A one-dimensional model of the biogeochemistry and speciation of iron is coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model. The model is able to simulate the temporal patterns and vertical profiles of dissolved iron (dFe) in the upper ocean at the Bermuda Atlantic Time-series Study site reasonably well. Subsurface model profiles strongly depend on the parameter values chosen for the loss processes for iron, colloidal aggregation and scavenging onto particles. Estimates for these parameters based on observations in particle-rich waters result in depletion of dFe. A high stability constant of iron-binding organic ligands is required to reproduce the observed degree of organic complexation below the mixed layer. The scavenging residence time for iron in the model is shortest in spring and summer, because of the larger abundance of particles, and increases with depth towards values on the order of a hundred years. A solubility of atmospherically deposited iron higher than 2% lead to dFe concentrations incompatible with observations. Despite neglecting ultraviolet radiation, the model produces diurnal variations and mean vertical profiles of H2O2 and iron species that are in good agreement with observations.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 19 (1). GB1019.
    Publikationsdatum: 2018-03-16
    Beschreibung: By means of numerical modeling, we analyze the cycling of iron between its various physical (dissolved, colloidal, particulate) and chemical (redox state and organic complexation) forms in the upper mixed layer. With our proposed model it is possible to obtain a first quantitative assessment of how this cycling influences iron uptake by phytoplankton and its loss via particle export. The model is forced with observed dust deposition rates, mixed layer depths, and solar radiation at the site of the Bermuda Atlantic Time-series Study (BATS). It contains an objectively optimized ecosystem model which yields results close to the observational data from BATS that has been used for the data-assimilation procedure. It is shown that the mixed layer cycle strongly influences the cycling of iron between its various forms. This is mainly due to the light dependency of photoreductive processes, and to the seasonality of primary production. The daily photochemical cycle is driven mainly by the production of superoxide, and its amplitude depends on the concentration and speciation of dissolved copper. Model results are almost insensitive to the dominant form of dissolved iron within dust deposition, and also to the form of iron that is taken up directly during algal growth. In our model solutions, the role of the colloidal pumping mechanism depends strongly on assumptions on the colloid aggregation and photoreduction rate.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    Publikationsdatum: 2023-08-01
    Beschreibung: The δ30Si of biogenic silica ( urn:x-wiley:gbc:media:gbc20388:gbc20388-math-0001) in marine sediments is a promising proxy for the reconstruction of silicic acid utilization by diatoms in the geological past. The application of this proxy, however, requires an understanding of the modern δ30Si distributions and their controlling mechanisms. Here we present results from a modern climate simulation with a coupled ocean‐sediment model that includes a prognostic formulation of biogenic silica production with concurrent silicon isotopic fractionation. In agreement with previous studies, biological fractionation combined with physical transport and mixing determines the oceanic distribution of simulated δ30Si. A new finding is a distinct seasonal cycle of δ30Si in the surface ocean, which is inversely related to that of silicic acid concentration and mixed layer depth. We also provide the first simulation results of sedimentary δ30Si, which reveal that (1) the urn:x-wiley:gbc:media:gbc20388:gbc20388-math-0002 distribution in the surface sediment reflects the exported urn:x-wiley:gbc:media:gbc20388:gbc20388-math-0003 signal from the euphotic zone and (2) the dissolution of biogenic silica in the sediment acts as a source of relatively light δ30Si into the bottom waters of the polar oceans, while it is a source of heavier δ30Si to the subtropical South Atlantic and South Pacific.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    In:  EPIC3Global Biogeochemical Cycles, 34(6), ISSN: 0886-6236
    Publikationsdatum: 2020-07-15
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...