GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-12-20
    Description: Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating AB B[Symbol: see text]AC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic properties of bilayer and few-layer graphene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butz, Benjamin -- Dolle, Christian -- Niekiel, Florian -- Weber, Konstantin -- Waldmann, Daniel -- Weber, Heiko B -- Meyer, Bernd -- Spiecker, Erdmann -- England -- Nature. 2014 Jan 23;505(7484):533-7. doi: 10.1038/nature12780. Epub 2013 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Cauerstrasse 6, 91058 Erlangen, Germany. ; Interdisziplinares Zentrum fur Molekulare Materialien und Computer-Chemie-Centrum, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Nagelsbachstrasse 25, 91052 Erlangen, Germany. ; Lehrstuhl fur Angewandte Physik, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Staudtstrasse 7, 91058 Erlangen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352231" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-12
    Description: Author(s): C. Schinabeck, R. Härtle, H. B. Weber, and M. Thoss The influence of multiple vibrational modes on current fluctuations in electron transport through single-molecule junctions is investigated. Our analysis is based on a generic model of a molecular junction, which comprises a single electronic state on the molecular bridge coupled to multiple vibrati... [Phys. Rev. B 90, 075409] Published Mon Aug 11, 2014
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-23
    Description: The effect of germanium (Ge) on n-type 4H-SiC is experimentally studied by electrical characterization of homoepitaxial layers grown by chemical vapor deposition (CVD). Measurements show that electrical properties of epitaxial layers can be changed by intentional incorporation of germane (GeH 4 ) gas during the deposition process. On the nanoscale, two-dimensional mappings acquired with conductive atomic force microscopy show preferential conductive paths on the surface of Ge-doped samples, which are related to the presence of this isoelectronic impurity. Hall effect measurements confirm that also macroscopic electrical properties of n-type 4H-SiC are improved due to incorporation of Ge into SiC during CVD growth. In particular, despite equal free electron concentration, enhanced mobility in a wide temperature range is measured in Ge-doped samples as compared to a pure 4H-SiC layer. Based on our results from Hall effect measurements as well as admittance spectroscopy and deep level transient spectroscopy, it is speculated that Ge influences the generation and annealing of other point defects and thus helps to reduce the total concentration of defects.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-12
    Description: We demonstrate the charge sensing of a few-donor double quantum dot precision placed with atomic resolution scanning tunnelling microscope lithography. We show that a tunnel-coupled single electron transistor (SET) can be used to detect electron transitions on both dots as well as inter-dot transitions. We demonstrate that we can control the tunnel times of the second dot to the SET island by ∼4 orders of magnitude by detuning its energy with respect to the first dot.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...