GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Natural hazards 10 (1994), S. 197-219 
    ISSN: 1573-0840
    Keywords: Mexico ; Citlaltepetl ; volcanic lava ; pyroclastic ; epiclastic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract Volcanic hazards from Pico de Orizaba volcano are presented here tor the first time. Some 1.3 million people live within the hazard zone, which in the most severe case would encompass the Mexican Gulf coast, east of the volcano. Three major cities located in the eastern part of the hazard zone account for 800 000 of this population and about 200 000 people live within a 20 km radius of the volcano. Probability calculations are presented as an attempt to quantify the hazards in the surroundings of the volcano. Such quantification can be of use in planning for future land use within the hazard zones. A zone of about 10 km radius centred on the top crater is a high hazard zone for gravity-driven flows and fallout ejecta. For large volume eruptions, the radius could be extended to 120 km to the east and 60 km to the west. The asymmetrical distribution is related to the topography of the volcano. Hazards from Pyroclastic-fall deposits are principally to the west of the volcano, since easterly winds are dominant in the area lava-flow hazards are greatest within a 10 km radius from the summit crater. Pyroclastic flow hazards are high up to 20 km from the volcano summit. In the case of reactivation of the volcano, melting of a glacier covering the summit of Pico de Orizaba having a volume equivalent to some 45 × 109 litres of water, would produce lahars which would descend the flanks of the volcano.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The breakup of Laurasia to form the Northeast Atlantic Realm disintegrated an inhomogeneous collage of cratons sutured by cross-cutting orogens. Volcanic rifted margins formed that are underlain by magma-inflated, extended continental crust. North of the Greenland-Iceland-Faroe Ridge a new rift–the Aegir Ridge–propagated south along the Caledonian suture. South of the Greenland-Iceland-Faroe Ridge the proto-Reykjanes Ridge propagated north through the North Atlantic Craton along an axis displaced ~150 km to the west of the rift to the north. Both propagators stalled where the confluence of the Nagssugtoqidian and Caledonian orogens formed an ~300-km-wide transverse barrier. Thereafter, the ~150 × 300-km block of continental crust between the rift tips–the Iceland Microcontinent–extended in a distributed, unstable manner along multiple axes of extension. These axes repeatedly migrated or jumped laterally with shearing occurring between them in diffuse transfer zones. This style of deformation continues to the present day in Iceland. It is the surface expression of underlying magma-assisted stretching of ductile continental crust that has flowed from the Iceland Microplate and flanking continental areas to form the lower crust of the Greenland-Iceland-Faroe Ridge. Icelandic-type crust which underlies the Greenland-Iceland-Faroe Ridge is thus not anomalously thick oceanic crust as is often assumed. Upper Icelandic-type crust comprises magma flows and dykes. Lower Icelandic-type crust comprises magma-inflated continental mid- and lower crust. Contemporary magma production in Iceland, equivalent to oceanic layers 2–3, corresponds to Icelandic-type upper crust plus intrusions in the lower crust, and has a total thickness of only 10–15 km. This is much less than the total maximum thickness of 42 km for Icelandic-type crust measured seismically in Iceland. The feasibility of the structure we propose is confirmed by numerical modeling that shows extension of the continental crust can continue for many tens of millions of years by lower-crustal ductile flow. A composition of Icelandic-type lower crust that is largely continental can account for multiple seismic observations along with gravity, bathymetric, topographic, petrological and geochemical data that are inconsistent with a gabbroic composition for Icelandic-type lower crust. It also offers a solution to difficulties in numerical models for melt-production by downward-revising the amount of melt needed. Unstable tectonics on the Greenland-Iceland-Faroe Ridge can account for long-term tectonic disequilibrium on the adjacent rifted margins, the southerly migrating rift propagators that build diachronous chevron ridges of thick crust about the Reykjanes Ridge, and the tectonic decoupling of the oceans to the north and south. A model of complex, discontinuous continental breakup influenced by crustal inhomogeneity that distributes continental material in growing oceans fits other regions including the Davis Strait, the South Atlantic and the West Indian Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: The objectives of R/V Neil Armstrong cruise AR35-04 (Fig. 1) were to survey the flanks of the Reykjanes Ridge and determine the timing, geometry and associated geophysical characteristics of the large-scale tectonic reorganizations that occurred there in the Paleogene and continue to the present (Fig. 2). The North Atlantic plate boundary between what is today the Bight Fracture Zone and Iceland, a distance of nearly 1000 km, was originally a linear orthogonally-spreading ridge that became abruptly fragmented in a stair-step fashion following a change in plate motion [Smallwood and White, 2002]. Its subsequent evolution involved the systematic and progressive removal of offsets from north to south to re-establish its original linear configuration [Hey et al., 2016; Martinez and Hey, 2017], even though this required the ridge to then spread obliquely, since the new spreading direction remained stable. These tectonic reorganizations took place within the region of influence of the Iceland “hotspot” which creates a strong gradient in mantle melting along the ridge, increasing crustal thicknesses by ~3-4 km and decreasing ridge axis depths by ~ 3000 m between the Bight Fracture Zone and Iceland [Louden et al., 2004]. A mantle gradient in melting properties (compositional and/or thermal) is presumably what results in the regional residual basement depth anomaly that extends throughout this region of the North Atlantic from the Greenland-Iceland-Faroe Ridge to south of the Bight Fracture Zone. This gradient in mantle properties with distance from the Iceland hotspot apparently had strong modulating effects on the tectonic reorganizations: the initial segment lengths and offsets appear in regional magnetic anomaly and satellite-derived gravity maps to be smaller toward Iceland and the segments evolved to re-establish the linear ridge configuration more quickly to the north [Hey et al., 2016]. As both kinematic and “hotspot” effects influence their development, the Reykjanes ridge flanks are key areas for investigating lithospheric and mantle controls on ridge segmentation, formation and elimination of transform faults and the mechanisms controlling their evolution.
    Description: This work was funded by NSF grant OCE-1756760. The Marine Advanced Technology and Education program supported the participation of the MATE interns. An InterRidge Cruise Bursary supported the participation of Dr. Dominik Palgan.
    Repository Name: Woods Hole Open Access Server
    Type: Other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...