GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Language
  • 1
    Publication Date: 2024-03-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m〈sup〉2〈/sup〉 in the basin and 257–1003 mW/m〈sup〉2〈/sup〉 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages >0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 10〈sup〉3〈/sup〉 yr), the thermal relaxation time of sills (ca. 10〈sup〉4〈/sup〉 yr), the characteristic cooling time of the sediments (ca. 10〈sup〉5〈/sup〉 yr), and the cooling of the entire crust at geologic timescales.〈/p〉
    Description: Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California http://dx.doi.org/10.13039/501100003089
    Description: German Research Center for Geosciences
    Description: https://web.iodp.tamu.edu/LORE/
    Description: https://mlp.ldeo.columbia.edu/logdb/scientific_ocean_drilling/
    Keywords: ddc:551.1 ; Guyamas Basin ; Heat Flow ; Heat Transfer ; IODP Expedition 385
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-24
    Description: We investigated the evolution of the Pb isotopic composition of bulk sediments on the Cocos Plate in sedimentary successions of Deep Sea Drilling Project (DSDP) Site 495 and Ocean Drilling Program (ODP) Site 1256 over the past 23 million years of depositional history. Our study addresses the relationship of the sediment Pb isotope record to plate tectonics, weathering inputs, and paleoceanography. It is the first effort to characterize the Pb isotopic evolution of eastern equatorial Pacific sedimentation covering the entire tectonic pathway of the Cocos Plate from its formation at the East Pacific Rise to its arrival at the Central American subduction zone. The Sites 495 and 1256 bulk sediment Pb isotope records are fully consistent over time despite distinct differences between the type of sediment deposited at both locations. A systematic and continuous trend from ∼23 to ∼6–4 Ma toward more radiogenic Pb isotopic compositions, e.g., 206Pb/204Pb ratios increase from 18.29 to 18.81, reflects a decrease in the contribution of hydrothermal particles from the East Pacific Rise and an increase in the predominantly eolian contribution of mixed weathering products from the continental arcs of the Northern and south Central Andes as well as from southern Mexico. Surprisingly, both the Pb isotopic composition of the detrital fraction and that of past seawater indicate that inputs from nearby Central America and the Galápagos Archipelago did not significantly contribute to the sediments of our core locations but were overwhelmed by other sediment sources. A systematic change to less radiogenic Pb isotope ratios in sediments younger than ∼4–3 Ma, reaching present-day 206Pb/204Pb values near 18.70, reflects a reduction of the continental input from the South Central Volcanic Zone of the Andean Arc and increased contributions from southern Mexican igneous complexes. This isotopic trend reversal took place as a consequence of changes in atmospheric circulation, when the studied sites crossed the Intertropical Convergence Zone due to tectonic drift and concurrent climate cooling. Eolian transport has played a major role in the supply of detrital material over the entire Neogene and Quaternary. The delivery of hydrothermal Pb originating from the East Pacific Rise to the easternmost tropical Pacific has been a persistent feature that is attributed to a remarkably stable central and eastern Pacific deep-water flow pattern over millions of years. Thus, deep ocean circulation did not change significantly as a consequence of either (1) the Early Miocene closure of the deep gateway between the Caribbean and eastern Central Pacific or (2) the Late Pliocene complete closure of the Central American Seaway.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-18
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-21
    Description: We document the geometry of a massive sill at the root of an approximately 20-m high and 800m-wide ring of hydrothermal formations, termed Ringvent, located 28.5 km off-axis on the northwestern flanking regions of the actively rifting Guaymas Basin (Gulf of California). Using petrophysical data collected during the IODP Expedition 385 and processed 2D seismic profiles, we present evidence on the mechanics of sill emplacement and how the related hydrothermal vent conduits were constructed. The currently active moderate-temperature hydrothermal vent field indicates that, despite being cold and crystallized, the magma plumbing system, is tapping into a deeper geothermal source of the basin. The vent system roots at the vertical end of the magma plumbing system with the top of the sill located at a depth range of 80 to 150 m below the seafloor. Our research aims at constraining how far deep the geothermal fluids are coming from, and identifying how close the hydrothermal system is from a steady-state condition, to draw implications for how frequently such a system may arise in nascent ocean basins.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Highlights • Syn-rift sediments in the northern South China Sea are from the East Cathaysia block. • Rivers delivered sediments migrated from eastern to western region. • Tributaries catchment of the Pearl River started to migrate since the late Eocene. • The migration of the river catchment is related to the west-east topographic swap. • Topographic change was possibly related to the local tectonic uplift and exhumation. We examined an International Ocean Discovery Program (IODP) drilling core from Site U1501, located on the distal margin of the northern South China Sea (SCS) basin to unravel the sediment provenance evolution in the Paleogene and the evolution of river catchments during basin opening. We attempt to understand the major factors driving river development in a rift basin by utilizing provenance tools to constrain sediment transport pathways and compare these with the regional tectonics during the Paleogene in order to resolve competing models for drainage evolution and test their relationships with the evolving topography of SW China and the SE Tibetan Plateau. For this purpose, ten samples were collected from a 200-m-thick, syn-rift Eocene/pre-Eocene interval. Detrital zircon U-Pb data were collected by LA-ICP-MS to identify the sediment provenance and differentiate fluvial sources. Bulk rock geochemistry data was utilized to shed light on chemical weathering conditions and compositional maturity to further decipher sediment transportation patterns. We compare our data with adjacent IODP Site U1435 and several industrial boreholes located in the Pearl River Mouth Basin (PRMB). We applied multiple statistical tests, including K-S, Monte Carlo mixing and multidimensional scaling testing, to evaluate U-Pb age spectra similarities and to estimate endmember contributions from a variety of source areas. Our results from Site U1501 show that sediments deposited as fluvial sands during the rifting stage, were predominantly derived from the East Cathaysia block, probably from local sources. A progressive increase in older detrital zircon U-Pb ages peaks (〉200 Ma) was observed at Site U1435 and in PRMB strata, signaling a spatial shift in sediment provenance from east to west occurring between the late Eocene and the early Oligocene. This trend reflects a transition in sediment delivery from local small-catchment streams to a more regional drainage eroding the east and north of the South China Block. Westward drainage expansion is likely impacted by the uplift of the Tibetan Plateau.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...