GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-03-14
    Keywords: Banagi; Conductivity; DEPTH, soil; Elevation of event; Event label; GDGTs; Kemarishe; Kirawira; Latitude of event; Longitude of event; Makoma; Malambo Road; MULT; Multiple investigations; Musabi; Naabi Hill; Ndabakal; Nyaruswiga; Optional event label; pH; Salinity; Sample code/label; Serengeti; Serengeti_soil_Banagi; Serengeti_soil_Kemarishe; Serengeti_soil_Kirawira; Serengeti_soil_Makoma; Serengeti_soil_Malambo_Road; Serengeti_soil_Musabi; Serengeti_soil_Naabi_Hill; Serengeti_soil_Ndabaka; Serengeti_soil_Nyaruswiga; Serengeti_soil_Shifting_Sands; Serengeti_soil_Simba_Kopjes; Shifting Sands; Simba Kopjes; Soil; Total dissolved solids
    Type: Dataset
    Format: text/tab-separated-values, 492 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Description: Most clay minerals in sedimentary environments have traditionally been considered to be of detrital origin, but under certain conditions, authigenic clay minerals can form at low temperature through the transformation of precursor clays or as direct precipitates from lake-water. Such clay minerals can hold important information about the prevailing climatic conditions during the time of deposition. We present the first quantitative reconstruction of salinity in paleolake Olduvai based on the oxygen-isotope composition of authigenic clay minerals. We provide a framework illustrating that the isotopic signature of authigenic lacustrine clay minerals is related to the isotopic composition of paleo-waters, and hence to paleosalinity. This new paleosalinity proxy shows that the early Pleistocene East African monsoon was driven by combinations of precession and obliquity forcing, and subsequent changes in tropical SSTs. Such quantitative lacustrine paleosalinity estimates provides a new direction of research for modeling ecosystem change based on an ecologically relevant parameter.
    Keywords: Africa, Tanzania; Age model; HAND; Illite; Olduvai-Paleolake; Sample ID; Sampling by hand; Smectite; δ18O, illite-smectite
    Type: Dataset
    Format: text/tab-separated-values, 195 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-30
    Description: Soil profiles were collected along a transect across the Serengeti ecosystem, in Tanzania from 2-3S and 34-35.5E, 1153 to 1677 m above sea level and 0 to 1.6 m soil depth. The samples are modern soils and the temporal span of the soil depth profiles is unconstrained, likely centuries to millennia. The survey is intended to observe soil microbial lipid biomarkers that are commonly used as proxies for temperature and pH and to assess their robustness in alkaline carbonate-precipitating soil profiles, where soil carbonate proxies can also be applied. These modern calibrations can inform reconstructions of Eastern African paleoenvironments using the same proxies in geological archives. Lipid extractions and purifications were performed at USC in 2018-2019 and abundances of branched and isoprenoidal glycerol dialkyl glycerol tetraethers were obtained by high pressure liquid chromatography mass spectrometry, performed in 2020-2021 at the University of Arizona. Contextual data include total dissolved solids and pH measurements at the University of Houston in 2020-2021. For more information, please consult associated manuscript on the GDGTs within these soil profiles: Peaple et al., (2022) Identifying the drivers of GDGT distributions in alkaline soil profiles within the Serengeti ecosystem, Organic Geochemistry, in review. A publication on the bulk organics and compound specific carbon isotopic composition of plant waxes in the same soils: Zhang, et al. (2021) Carbon isotopic composition of plant waxes, bulk organics and carbonates from soils of the Serengeti grasslands, Geochimica et Cosmochimica Acta, 311, 316-331, doi:10.1016/j.gca.2021.07.005. That study includes stable hydrogen isotopic data on plant wax, available from doi:10.1594/PANGAEA.921002. A publication on multiple oxygen isotopes within carbonates in the same soil profiles can be found at: Beverly, E.J., Levin, N.E., Passey, B.H., Aron, P.G., Yarian, D.A., Page, M. and Pelletier, E.M. (2021) Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania. Earth and Planetary Science Letters, 567, 116952, doi:10.1016/j.epsl.2021.116952. That study includes stable carbon isotopic data on soil carbonates, available from doi:10.5281/zenodo.4919027.
    Keywords: GDGTs; pH; Salinity; Soil
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-22
    Keywords: Archaeol; Archaeol and Caldarchaeol Ecometric index; Banagi; Branched and isoprenoid tetraether index; Branched glycerol dialkyl glycerol tetraether; Branched glycerol dialkyl glycerol tetraether, Ia; Branched glycerol dialkyl glycerol tetraether, Ia, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ib; Branched glycerol dialkyl glycerol tetraether, Ib, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ic; Branched glycerol dialkyl glycerol tetraether, Ic, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa; Branched glycerol dialkyl glycerol tetraether, IIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa'; Branched glycerol dialkyl glycerol tetraether, IIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb; Branched glycerol dialkyl glycerol tetraether, IIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb'; Branched glycerol dialkyl glycerol tetraether, IIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc; Branched glycerol dialkyl glycerol tetraether, IIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc'; Branched glycerol dialkyl glycerol tetraether, IIc', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa; Branched glycerol dialkyl glycerol tetraether, IIIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa'; Branched glycerol dialkyl glycerol tetraether, IIIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb; Branched glycerol dialkyl glycerol tetraether, IIIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb'; Branched glycerol dialkyl glycerol tetraether, IIIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc; Branched glycerol dialkyl glycerol tetraether, IIIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc'; Branched glycerol dialkyl glycerol tetraether, IIIc', fractional abundance; Carbon, organic, total; Cyclization ratio of branched tetraethers; DEPTH, soil; Depth comment; Elevation of event; Event label; Isomer ratio of 6-methyl branched glycerol dialkyl glycerol tetraethers; Isoprenoid acyclic glycerol dialkyl glycerol tetraether; Isoprenoid acyclic glycerol dialkyl glycerol tetraether, fractional abundance; Isoprenoidal glycerol dialkyl glycerol tetraethers; Isoprenoid dicyclic glycerol dialkyl glycerol tetraether; Isoprenoid dicyclic glycerol dialkyl glycerol tetraether, fractional abundance; Isoprenoid glycerol dialkyl glycerol tetraether, 5; Isoprenoid glycerol dialkyl glycerol tetraether, 5, fractional abundance; Isoprenoid glycerol dialkyl glycerol tetraether, 5'; Isoprenoid glycerol dialkyl glycerol tetraether, 5', fractional abundance; Isoprenoid glycerol dialkyl glycerol tetraether, per unit mass total organic carbon; Isoprenoid glycerol dialkyl glycerol tetraether/branched glycerol dialkyl glycerol tetraether ratio; Isoprenoid monocyclic glycerol dialkyl glycerol tetraether; Isoprenoid monocyclic glycerol dialkyl glycerol tetraether, fractional abundance; Isoprenoid tricyclic glycerol dialkyl glycerol tetraether; Isoprenoid tricyclic glycerol dialkyl glycerol tetraether, fractional abundance; Kemarishe; Kirawira; Latitude of event; Longitude of event; Makoma; Malambo Road; Methylation index of 5-methyl branched glycerol dialkyl glycerol tetraether; MULT; Multiple investigations; Musabi; Naabi Hill; Ndabakal; Nyaruswiga; Optional event label; Precipitation, annual mean; Sample code/label; Serengeti; Serengeti_soil_Banagi; Serengeti_soil_Kemarishe; Serengeti_soil_Kirawira; Serengeti_soil_Makoma; Serengeti_soil_Malambo_Road; Serengeti_soil_Musabi; Serengeti_soil_Naabi_Hill; Serengeti_soil_Ndabaka; Serengeti_soil_Nyaruswiga; Serengeti_soil_Shifting_Sands; Serengeti_soil_Simba_Kopjes; Shifting Sands; Simba Kopjes; Temperature, annual mean
    Type: Dataset
    Format: text/tab-separated-values, 1352 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...