GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Peripheral axotomy-induced sprouting of thick myelinated afferents (A-fibers) from laminae III–IV into laminae I–II of the spinal cord is a well-established hypothesis for the structural basis of neuropathic pain. However, we show here that the cholera toxin B subunit (CTB), a neuronal tracer used to demonstrate the sprouting of A-fibers in several earlier studies, also labels unmyelinated afferents (C-fibers) in lamina II and thin myelinated afferents in lamina I, when applied after peripheral nerve transection. The lamina II afferents also contained vasoactive intestinal polypeptide and galanin, two neuropeptides mainly expressed in small dorsal root ganglion (DRG) neurons and C-fibers. In an attempt to label large DRG neurons and A-fibers selectively, CTB was applied four days before axotomy (pre-injury-labelling), and sprouting was monitored after axotomy. We found that only a small number of A-fibers sprouted into inner lamina II, a region normally innervated by C-fibers, but not into outer lamina II or lamina I. Such sprouts made synaptic contact with dendrites in inner lamina II. Neuropeptide Y (NPY) was found in these sprouts in inner lamina II, an area very rich in Y1 receptor-positive processes. These results suggest that axotomy-induced sprouting from deeper to superficial layers is much less pronounced than previously assumed, in fact it is only marginal. This limited reorganization involves large NPY immunoreactive DRG neurons sprouting into the Y1 receptor-rich inner lamina II. Even if quantitatively small, it cannot be excluded that this represents a functional circuitry involved in neuropathic pain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Lateral cervical nucleus ; Midbrain lesions ; Nauta method ; Ultrastructural investigation ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The lateral cervical nucleus (LCN) has been studied with the light and electron microscope after midbrain lesions in kittens of different ages, and in adult cats. It has been shown that nerve cells remain within the contralateral LCN after hemisection of the midbrain. performed on 1 day old kittens. The estimated number of these remaining cells was 3–19% in the different cases. No fibers descending to the LCN from levels rostral to the midbrain could be demonstrated in adult cats with the Nauta technique. A combined Nauta and electron microscopical investigation was performed on kittens operated on at different ages and allowed to survive varying times postoperatively. At the operations the LCN-axons were transected at midbrain level. The Nauta investigation demonstrated silver impregnation of degenerating LCN-neurons on the affected side of the same type as has been described recently in other neuronal systems following axonal transection. The ultrastructural study revealed electron dense degenerating dendrites and probably also nerve cells within the LCN. The dense degenerative changes were very similar to the dense degeneration in terminal boutons following transection of parent axons. The potential value of the findings for electron microscopical research in neuroanatomy is discussed. The results in terms of connections of the LCN are discussed in the light of known anatomical and physiological data of the LCN.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Localization of GM1 ganglioside, the receptor for cholera toxin, and choleragenoid, which is the binding subunit of cholera toxin, was studied in the rat L5 dorsal root ganglion. Sections were incubated with choleragenoid and treated immunocytochemically. Choleragenoid-like immunoreactive cells were then examined for possible co-localization with carbonic anhydrase-like, RT 97 (antibody to neurofilament proteins), substance P-like, somatostatin-like and calcitonin gene-related peptide-like immunoreactivity and fluoride-resistant acid phosphatase (FRAP) activity, using adjacent sections. A subpopulation of dorsal root ganglion neurons exhibited choleragenoid-like immunoreactivity. The majority of these were medium-sized and large neurons. The strongest immunoreactivity was found in the area of the plasma membrane, but strong reactivity was also seen in the cytoplasm. The majority of the choleragenoid-like immunoreactive cells showed carbonic anhydrase-like and RT 97 immunoreactivity. Cells showing co-localization of choleragenoid-like and neuropeptide-like immunoreactivity or activity for FRAP were rarely observed. Our results suggest that the GM1 receptor is localized primarily on carbonic anhydrase-containing and RT 97-immunoreactive primary sensory neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Summary Interferon-γ can facilitate the spinal nociceptive flexor reflex and elicit neuropathic pain-related behavior in rats and mice. Immunoreactivity for the interferon-γ receptor (IFN-γR) occurs in the superficial layers of the dorsal horn and the lateral spinal nucleus in the rat and mouse spinal cord, as well as in subsets of neurons in the dorsal root ganglia. The aim of the present study was to examine the cellular localization and origin of the IFN-γR in the spinal cord. As viewed by confocal microscopy, the immunopositivity for the IFN-γR was co-localized with that of the presynaptic marker synaptophysin and with neuronal nitric oxide synthase in the lateral spinal nucleus, whereas only a minor overlap with these molecules was observed in laminae I and II of the dorsal horn. There was no co-localization of the IFN-γR with markers for astrocytes and microglial cells. Ultrastructurally, the IFN-γR was found predominantly in axon terminals in the lateral spinal nucleus but also at postsynaptic sites in dendrites in laminae I and II. The IFN-γR expressed in neurons in dorsal root ganglia was transported in axons both centrally and peripherally. Hemisection of the spinal cord caused no reduction in immunolabelling of the IFN-γR in the dorsal horn or the lateral spinal nucleus. Since rhizotomy does not effect the immunolabelling in the lateral spinal nucleus, our observation indicates that the presynaptic receptors in this nucleus are derived from intrinsic neurons. The localization of the IFN-γR in the spinal cord differed from that of the AMPA glutamate receptor subunits 2 and 3 and the substance P receptor (NK1). Our results, showing localization of IFN-γR to pre- and postsynaptic sites in the dorsal horn and lateral spinal nucleus indicate that IFN-γ can modulate nociception at the spinal cord level.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...