GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 394 (1998), S. 367-369 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Solute uptake by microorganisms is limited by molecular diffusion through a boundary layer surrounding the cells, and the uptake is not enhanced (or only insignificantly) by convective water transport or by swimming. It is generally assumed that sediment uptake of oxygen is diffusion-limited, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Sea-ice ecosystems are among the most extensive of Earth’s habitats; yet its autotrophic and heterotrophic activities remain poorly constrained. We employed the in situ aquatic eddy-covariance (AEC) O2 flux method and laboratory incubation techniques (H14CO3−, [3H] thymidine and [3H] leucine) to assess productivity in Arctic sea-ice using different methods, in conditions ranging from land-fast ice during winter, to pack ice within the central Arctic Ocean during summer. Laboratory tracer measurements resolved rates of bacterial C demand of 0.003–0.166 mmol C m−2 day−1 and primary productivity rates of 0.008–0.125 mmol C m−2 day−1 for the different ice floes. Pack ice in the central Arctic Ocean was overall net autotrophic (0.002–0.063 mmol C m−2 day−1), whereas winter land-fast ice was net heterotrophic (− 0.155 mmol C m−2 day−1). AEC measurements resolved an uptake of O2 by the bottom-ice environment, from ~ − 2 mmol O2 m−2 day−1 under winter land-fast ice to~ − 6 mmol O2 m−2 day−1 under summer pack ice. Flux of O2-deplete meltwater and changes in water flow velocity masked potential biological-mediated activity. AEC estimates of primary productivity were only possible at one study location. Here, productivity rates of 1.3 ± 0.9 mmol O2 m−2 day−1, much larger than concurrent laboratory tracer estimates (0.03 mmol C m−2 day−1), indicate that ice algal production and its importance within the marine Arctic could be underestimated using traditional approaches. Given careful flux interpretation and with further development, the AEC technique represents a promising new tool for assessing oxygen dynamics and sea-ice productivity in ice-covered regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The benthic environment is a crucial component of marine systems in the provision of ecosystem services, sustaining biodiversity and in climate regulation, and therefore important to human society. With the contemporary increase in computational power, model resolution and technological improvements in quality and quantity of benthic data, it is necessary to ensure that benthic systems are appropriately represented in coupled benthic-pelagic biogeochemical and ecological modelling studies. In this paper we focus on five topical challenges related to various aspects of modelling benthic environments: organic matter reactivity, dynamics of benthic-pelagic boundary layer, microphytobenthos, biological transport and small-scale heterogeneity, and impacts of episodic events. We discuss current gaps in their understanding and indicate plausible ways ahead. Further, we propose a three-pronged approach for the advancement of benthic and benthic-pelagic modelling, essential for improved understanding, management and prediction of the marine environment. This includes: (A) development of a traceable and hierarchical framework for benthic-pelagic models, which will facilitate integration among models, reduce risk of bias, and clarify model limitations; (B) extended cross-disciplinary approach to promote effective collaboration between modelling and empirical scientists of various backgrounds and better involvement of stakeholders and end-users; (C) a common vocabulary for terminology used in benthic modelling, to promote model development and integration, and also to enhance mutual understanding.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 59 (5). pp. 1555-1569.
    Publication Date: 2020-11-23
    Description: We present the first year-round estimates of benthic primary production at four contrasting shallow (3–22 m depth) benthic habitats in a southwest Greenland fjord. In situ measurements were performed using the noninvasive aquatic eddy-correlation (EC) oxygen (O2) flux method. A series of high-quality multiple-day EC data sets document the presence of a year-round productive benthic phototrophic community. The shallow-water sites were on average autotrophic during the spring and summer months, up to 43.6 mmol O2 m22 d21, and heterotrophic or close to metabolic balance during the autumn and winter. Substantial benthic gross primary production (GPP) was measured year-round. The highest GPP rates were measured during the spring, up to 5.7 mmol O2 m22 h21 (136.8 mmol O2 m22 d21), and even at low light levels (, 80 mmol quanta m22 s21) during late autumn and winter we measured rates of up to 1.8 mmol O2 m22 h21 (43.2 mmol O2 m22 d21) during peak irradiance. The benthic phototrophic communities responded seasonally to ambient light levels and exhibited year-round high photosynthetic efficiency. In situ downwelling irradiances as low as , 2 mmol quanta m22 s21 induced an autotrophic response and light saturation indices (Ik) were as low as 11 mmol quanta m22 s21 in the winter. On an annual timescale, the average areal rate of benthic GPP was 11.5 mol O2 m22 yr21, which is , 1.4 times higher than the integrated gross pelagic primary production of the , 30–50 m deep photic zone of the fjord. These results document the importance of benthic photosynthesis on an ecosystem level and indicate that the benthic phototrophic compartment should be accounted for when assessing carbon and nutrient budgets as well as responses of coastal Arctic ecosystems to climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (10). pp. 6918-6932.
    Publication Date: 2018-02-26
    Description: Continental shelves are predominately (~70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive the variable sediment O2 penetration depth (from ~3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O2 uptake. The O2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange. The high O2 flux variability results from deeper sediment O2 penetration depths and increased O2 storage during high velocities, which is then utilized during low-flow periods. The study reveals that the benthic hydrodynamics, sediment permeability, and pore water redox oscillations are all intimately linked and crucial parameters determining the oxygen availability. These parameters must all be considered when evaluating mineralization pathways of organic matter and nutrients in permeable sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-25
    Description: The community respiration of 2 tidally dominated cold-water coral (CWC) sites was estimated using the non-invasive eddy correlation (EC) technique. The first site, Mingulay Reef Complex, was a rock ridge located in the Sea of Hebrides off Scotland at a depth of 128 m and the second site, Stjernsund, was a channel-like sound in Northern Norway at a depth of 220 m. Both sites were characterized by the presence of live mounds of the reef framework-forming scleractinian Lophelia pertusa and reef-associated fauna such as sponges, crustaceans and other corals. The measured O2 uptake at the 2 sites varied between 5 and 46 mmol m–2 d–1, mainly depending on the ambient flow characteristics. The average uptake rate estimated from the ~24 h long deployments amounted to 27.8 ± 2.3 mmol m–2 d–1 at Mingulay and 24.8 ± 2.6 mmol m–2 d–1 at Stjernsund (mean ± SE). These rates are 4 to 5 times higher than the global mean for soft sediment communities at comparable depths. The measurements document the importance of CWC communities for local and regional carbon cycling and demonstrate that the EC technique is a valuable tool for assessing rates of benthic O2 uptake in such complex and dynamic settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-03-12
    Description: Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8–35 and 9–40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m−2, maintaining an estimated net primary production of 0.4–40 mg C m−2 d−1, and accounted for 3–80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-08-15
    Description: The aquatic application of the eddy correlation (EC) technique is growing more popular and is gradually becoming a standard method for resolving benthic O2 fluxes. By including the effects of the local hydrodynamics, the EC technique provides greater insight into the nature of benthic O2 exchange than traditional methods (i.e., benthic chambers and lander microprofilers). The growing popularity of the EC technique has led to a greater demand for easily accessible and robust EC instrumentation. Currently, the EC instrumentation is limited to two commercially available systems that are still in the development stage. Here, we present a robust, open source EC picoamplifier that is simple in design and can be easily adapted to both new and existing acoustic Doppler velocimeters (ADV). The picoamplifier has a response time of 〈 0.1 ms and features galvanic isolation that ensures very low noise contamination of the signal. It can be adjusted to accommodate varying ranges of microelectrode sensitivity as well as other types of amperometric microelectrodes. We show that the extracted flux values are not sensitive to reduced microelectrode operational ranges (i.e., lower resolution) and that no signal loss results from using either a 16- or 14-bit analog-to-digital converter. Finally, we demonstrate the capabilities of the picoamplifier with field studies measuring both dissolved O2 and H2S EC fluxes. The picoamplifier presented here consistently acquires high-quality EC data and provides a simple solution for those who wish to obtain EC instrumentation. The schematic of the amplifier’s circuitry is given in the Web Appendix.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: In the hadal zone of the ocean (6–11 km), the characteristics of sinking marine snow particles and their attached microbial communities remain elusive, despite their potential importance for benthic life thriving at extreme pressures (60–110 MPa). Here, we used simulation experiments to explore how increasing pressure levels modify the microbial degradation, organic matter composition, and microbiome of sinking diatom aggregates. Individual aggregates were incubated in rotating tanks in which pressure was incrementally increased to simulate a descent from surface to hadal depth within 20 days. Incubations at atmospheric pressure served as controls. With increasing pressure, microbial respiration and diatom degradation decreased gradually and ceased completely at 60 MPa. Dissolved organic carbon leaked substantially from the aggregates at ≥40 MPa, while diatom lipid and pigment contents decreased moderately. Bacterial abundance remained stable at 〉40 MPa, but bacterial community composition changed significantly at 60–100 MPa. Thus, pressure exposure reduces microbial degradation and transforms both organic matter composition and microbiomes of sinking particles, which may seed hadal sediments with relatively fresh particulate organic matter and putative pressure-tolerant microbes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-06
    Keywords: Center for Marine Environmental Sciences; EXP; Experiment; Flow velocity, water; Flume_Eddy_2013_EXP_15op; MARUM; Oxygen; Oxygen optode (PyroScience GmbH, Germany); Particle image velocimetry (PIV)
    Type: Dataset
    Format: text/tab-separated-values, 8880 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...