GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Geochemistry, geophysics, geosystems, Hoboken, NJ : Wiley, 2000, 10(2009), 2, 1525-2027
    In: volume:10
    In: year:2009
    In: number:2
    In: extent:32
    Materialart: Online-Ressource
    Seiten: 32 , graph. Darst
    ISSN: 1525-2027
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-09-23
    Beschreibung: The volcanic front in southern Central America is well known for its Galapagos OIB-like geochemical signature. A comprehensive set of geochemical, isotopic and geochronological data collected on volumetrically minor alkaline basalts and adakites were used to better constrain the mantle and subduction magma components and to test the different models that explain this OIB signature in an arc setting. We report a migration of back-arc alkaline volcanism towards the northwest, consistent with arc-parallel mantle flow models, and a migration towards the southeast in the adakites possibly tracking the eastward movement of the triple junction where the Panama Fracture Zone intersects the Middle America Trench. The adakites major and trace-element compositions are consistent with magmas produced by melting a mantle-wedge source metasomatized by slab-derived melts. The alkaline magmas are restricted to areas that have no seismic evidence of a subducting slab. The geochemical signature of the alkaline magmas is mostly controlled by upwelling asthenosphere with minor contributions from subduction components. Mantle potential temperatures calculated from the alkaline basalt primary magmas increased from close to ambient mantle (~ 1380-1410 °C) in the Pliocene to ~ 1450 °C in the younger units. The calculated initial melting pressures for these primary magmas are in the garnet stability field (3.0-2.7 GPa). The average final melting pressures range between 2.7-2.5 GPa, which is interpreted as the lithosphere-asthenosphere boundary at ~ 85-90 km. We provide a geotectonic model that integrates the diverse observations presented here. The slab detached after the collision of the Galapagos tracks with the arc (~ 10-8 Ma). The detachment allowed hotter asthenosphere to flow into the mantle wedge. This influx of hotter asthenosphere explains the increase in mantle potential temperatures, the northwest migration in the back-arc alkaline lavas that tracks the passage of the hotter asthenosphere, and the presence of a slab melting signature in the volcanic front caused by recycling of Galapagos Hotspot tracks.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-12-19
    Beschreibung: Thin oceanic crust is formed by decompression melting of the upper mantle at mid-ocean ridges, but the origin of the thick and buoyant continental crust is enigmatic. Juvenile continental crust may form from magmas erupted above intraoceanic subduction zones, where oceanic lithosphere subducts beneath other oceanic lithosphere. However, it is unclear why the subduction of dominantly basaltic oceanic crust would result in the formation of andesitic continental crust at the surface. Here we use geochemical and geophysical data to reconstruct the evolution of the Central American land bridge, which formed above an intra-oceanic subduction system over the past 70Myr. We find that the geochemical signature of erupted lavas evolved from basaltic to andesitic about 10Myr ago - coincident with the onset of subduction of more oceanic crust that originally formed above the Galápagos mantle plume. We also find that seismic P-waves travel through the crust at velocities intermediate between those typically observed for oceanic and continental crust. We develop a continentality index to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust globally. We conclude that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone - a process probably more common in the Archaean - can produce juvenile continental crust.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Elsevier
    In:  [Talk] In: 20. Annual Goldschmidt Conference: Earth, Energy and Environment, 13.06.-19.06.2010, Knoxville, Tennessee, USA . Geochimica et Cosmochimica Acta ; A322 .
    Publikationsdatum: 2012-02-23
    Beschreibung: Although most Central American magmas have a depleted MORB-source mantle (fluxed by subduction-derived fluids), magmas in southern Central America have isotopic and trace element compositions with a Galapagos affinity. How Galapagos-influenced signature was introduced into the Central American mantle is at the heart of conflicting theories [e.g. 1, 2, 3]. Our new data for Costa Rica suggest that this signature has a relatively recent origin (~6 Ma) [4, 5]. REE inverse modelling [6] results indicate that garnet is not present in the distal back-arc region. In contrast, adakites from Central America, as well as volcanic front lavas and alkaline lavas from central Costa Rica (Fig. 1) and Panama, require garnet in the source. Garnet-present sources (〈6 Ma) close to the volcanic front in Costa Rica and Panama suggest that the Galapagos-related reservoir can be either asthenospheric or recycled (subducting Galapagos tracks). The garnet-free source (〉12 Ma) in the distal back-arc suggests that there is another enriched reservoir stored in the lithosphere, predating any recent subduction-generated or asthenospheric flow
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-09-23
    Beschreibung: [1] Although most Central American magmas have a typical arc geochemical signature, magmas in southern Central America (central Costa Rica and Panama) have isotopic and trace element compositions with an ocean island basalt (OIB) affinity, similar to the Galapagos-OIB lavas (e.g., Ba/La 〈 40, La/Yb 〉 10, 206Pb/204Pb 〉 18.8). Our new data for Costa Rica suggest that this signature, unusual for a convergent margin, has a relatively recent origin (Late Miocene ∼6 Ma). We also show that there was a transition from typical arc magmas (analogous to the modern Nicaraguan volcanic front) to OIB-like magmas similar to the Galapagos hot spot. The geographic distribution of the Galapagos signature in recent lavas from southern Central America is present landward from the subduction of the Galapagos hot spot tracks (the Seamount Province and the Cocos/Coiba Ridge) at the Middle American Trench. The higher Pb isotopic ratios, relatively lower Sr and Nd isotopic ratios, and enriched incompatible-element signature of central Costa Rican magmas can be explained by arc–hot spot interaction. The isotopic ratios of central Costa Rican lavas require the subducting Seamount Province (Northern Galapagos Domain) component, whereas the isotopic ratios of the adakites and alkaline basalts from southern Costa Rica and Panama are in the geochemical range of the subducting Cocos/Coiba Ridge (Central Galapagos Domain). Geological and geochemical evidence collectively indicate that the relatively recent Galapagos-OIB signature in southern Central America represents a geochemical signal from subducting Galapagos hot spot tracks, which started to collide with the margin ∼8 Ma ago. The Galapagos hot spot contribution decreases systematically along the volcanic front from central Costa Rica to NW Nicaragua.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-02-07
    Beschreibung: It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (〉1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3 He/ 4 He (up to 8.9R A ) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3 He/ 4 He 〉10.3R A (and potentially up to 26R A , similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1R A ). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3 He/ 4 He values in central Panama are likely derived from the infiltration of a Galápagos plume–like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a “mantle wind” toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bekaert, D. V., Gazel, E., Turner, S., Behn, M. D., de Moor, J. M., Zahirovic, S., Manea, V. C., Hoernle, K., Fischer, T. P., Hammerstrom, A., Seltzer, A. M., Kulongoski, J. T., Patel, B. S., Schrenk, M. O., Halldórsson, S. A., Nakagawa, M., Ramírez, C. J., Krantz, J. A., Yücel, M., Ballentine, C. J., Giovannelli, D., Lloyd, K. G., Barry, P. H. High (3)He/(4)He in central Panama reveals a distal connection to the Galápagos plume. Proceedings of the National Academy of Sciences of the United States of America, 118(47), (2021): e2110997118, https://doi.org/10.1073/pnas.2110997118.
    Beschreibung: It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (〉1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3He/4He (up to 8.9RA) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3He/4He 〉10.3RA (and potentially up to 26RA, similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1RA). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3He/4He values in central Panama are likely derived from the infiltration of a Galápagos plume–like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a “mantle wind” toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits.
    Beschreibung: This work was principally supported by Grant G-2016-7206 from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B. We also acknowledge the NSF awards (1144559, 1923915, and 2015789) to P.H.B., which partially supported this work. S.Z. was supported by the Australian Research Council Grant DE210100084 and a University of Sydney Robinson Fellowship. D.G. was partially supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program Grant Agreement No. 948972—COEVOLVE—ERC-2020-STG. This study was also supported in part by NSF award No. EAR 1826673 to E.G. Folkmar Hauff is acknowledged for contributing to the analysis of the La Providencia samples at GEOMAR.
    Schlagwort(e): Helium ; Mantle plume ; Slab window ; Mantle flow ; Geochemistry
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Gazel, E., Gaetani, G. A., & Klein, F. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48), (2021): eabj2515, https://doi.org/10.1126/sciadv.abj2515.
    Beschreibung: Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.
    Beschreibung: Y.Z. acknowledges funding from the National Science Foundation of China (91958213), the Chinese Academy of Sciences (XDB42020402), and the Shandong Provincial Natural Science Foundation, China (ZR2020QD068). This study was supported in part by the U.S. National Science Foundation NSF EAR 1826673 to E.G. and G.A.G. and OCE 1756349 to E.G.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 20, (2019): 5939-5967, doi: 10.1029/2019GC008654.
    Beschreibung: The Icelandic hotspot has erupted basaltic magma with the highest mantle‐derived 3He/4He over a period spanning much of the Cenozoic, from the early‐Cenozoic Baffin Island‐West Greenland flood basalt province (49.8 RA), to mid‐Miocene lavas in northwest Iceland (40.2 to 47.5 RA), to Pleistocene lavas in Iceland's neovolcanic zone (34.3 RA). The Baffin Island lavas transited through and potentially assimilated variable amounts of Precambrian continental basement. We use geochemical indicators sensitive to continental crust assimilation (Nb/Th, Ce/Pb, MgO) to identify the least crustally contaminated lavas. Four lavas, identified as “least crustally contaminated,” have high MgO (〉15 wt.%), and Nb/Th and Ce/Pb that fall within the mantle range (Nb/Th = 15.6 ± 2.6, Ce/Pb = 24.3 ± 4.3). These lavas have 87Sr/86Sr = 0.703008–0.703021, 143Nd/144Nd = 0.513094–0.513128, 176Hf/177Hf = 0.283265–0.283284, 206Pb/204Pb = 17.7560–17.9375, 3He/4He up to 39.9 RA, and mantle‐like δ18O of 5.03–5.21‰. The radiogenic isotopic compositions of the least crustally contaminated lavas are more geochemically depleted than Iceland high‐3He/4He lavas, a shift that cannot be explained by continental crust assimilation in the Baffin suite. Thus, we argue for the presence of two geochemically distinct high‐3He/4He components within the Iceland plume. Additionally, the least crustally contaminated primary melts from Baffin Island‐West Greenland have higher mantle potential temperatures (1510 to 1630 °C) than Siqueiros mid‐ocean ridge basalts (1300 to 1410 °C), which attests to a hot, buoyant plume origin for early Iceland plume lavas. These observations support the contention that the geochemically heterogeneous high‐3He/4He domain is dense, located in the deep mantle, and sampled by only the hottest plumes.
    Beschreibung: We acknowledge support from NSF EAR‐1624840 (to M.G.J.), NSF EAR‐1900652 (to M.G.J.), and NSF OCE‐1259218 (to M.D.K). We thank Don Francis for generously providing us access to his collection of Baffin Island lavas. We appreciate helpful discussion and feedback from Roberta Rudnick, Matthew Rioux, Douglas Wilson, and Keith Putirka. Jonathan Pinko is thanked for his help with sample preparation. Rick Carlson's continued generosity is gratefully acknowledged, especially discussions regarding 142Nd/144Nd evolution in the Earth. We acknowledge Al Hofmann for suggesting the use of Nb/Th, instead of Nb/U, in older rocks. We are grateful for helpful discussion with Maud Boyet while in Paris celebrating one of the author's birthdays. We thank Lotte Larsen and Asger Pedersen for advice and discussion regarding West Greenland samples. We thank C. Herzberg and G. Fitton for thorough and helpful reviews, which greatly improved this manuscript. All data published in this manuscript are available in the EarthChem data repository (https://doi.org/10.1594/IEDA/111373).
    Beschreibung: 2020-05-07
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. D., Wagner, L. S., King, S. D., Evans, R. L., Mazza, S. E., Byrnes, J. S., Johnson, E. A., Kirby, E., Bezada, M. J., Gazel, E., Miller, S. R., Aragon, J. C., & Liu, S. Evaluating models for lithospheric loss and intraplate volcanism beneath the Central Appalachian Mountains. Journal of Geophysical Research: Solid Earth, 126(10), (2021): e2021JB022571, https://doi.org/10.1029/2021JB022571.
    Beschreibung: The eastern margin of North America has been shaped by a series of tectonic events including the Paleozoic Appalachian Orogeny and the breakup of Pangea during the Mesozoic. For the past ∼200 Ma, eastern North America has been a passive continental margin; however, there is evidence in the Central Appalachian Mountains for post-rifting modification of lithospheric structure. This evidence includes two co-located pulses of magmatism that post-date the rifting event (at 152 and 47 Ma) along with low seismic velocities, high seismic attenuation, and high electrical conductivity in the upper mantle. Here, we synthesize and evaluate constraints on the lithospheric evolution of the Central Appalachian Mountains. These include tomographic imaging of seismic velocities, seismic and electrical conductivity imaging along the Mid-Atlantic Geophysical Integrative Collaboration array, gravity and heat flow measurements, geochemical and petrological examination of Jurassic and Eocene magmatic rocks, and estimates of erosion rates from geomorphological data. We discuss and evaluate a set of possible mechanisms for lithospheric loss and intraplate volcanism beneath the region. Taken together, recent observations provide compelling evidence for lithospheric loss beneath the Central Appalachians; while they cannot uniquely identify the processes associated with this loss, they narrow the range of plausible models, with important implications for our understanding of intraplate volcanism and the evolution of continental lithosphere. Our preferred models invoke a combination of (perhaps episodic) lithospheric loss via Rayleigh-Taylor instabilities and subsequent small-scale mantle flow in combination with shear-driven upwelling that maintains the region of thin lithosphere and causes partial melting in the asthenosphere.
    Beschreibung: The authors acknowledge support from the U.S. National Science Foundation EarthScope and GeoPRISMS programs via grants EAR-1460257 (R. L. Evans), EAR-1249412 (E. Gazel), EAR-1249438 (E. A. Johnson), EAR-1250988 (S. D. King), EAR-1251538 (E. Kirby), and EAR-1251515 (M. D. Long). The collection and dissemination of most of the geophysical data and models discussed in this study were facilitated by the Incorporated Research Institutions for Seismology (IRIS). The facilities of the IRIS Consortium are supported by the United States National Science Foundation under Cooperative Agreement EAR-1261681.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...