GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Micrometeorology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (254 pages)
    Edition: 1st ed.
    ISBN: 9783642545450
    DDC: 551.66
    Language: English
    Note: Intro -- Preface -- Contents -- Abbreviations -- Symbols -- 1 History and Definition -- 1.1…Micrometeorological Measurements -- 1.2…Towards the Footprint Definition -- 1.3…Footprint Modeling -- 1.4…Validation of Footprint Models -- References -- 2 Surface-Layer Properties and Parameterizations -- 2.1…Atmospheric Boundary Layer and Scales -- 2.2…Turbulence Parameterization -- 2.2.1 Flux-Gradient Similarity -- 2.2.2 Profile Functions Above the Canopy -- 2.2.3 Profile Functions in the Canopy -- 2.2.4 Roughness Sublayer -- 2.2.5 Power Laws -- 2.2.6 Dispersion Profiles -- 2.2.7 Relevance of Profile Parameterizations in Footprint Models -- 2.3…Internal Boundary Layers -- 2.3.1 Mechanical Internal Boundary Layer -- 2.3.2 Thermal Internal Boundary Layer -- 2.3.3 Blending Height Concept -- 2.4…Modeling Concepts -- 2.4.1 Diffusion Model -- 2.4.2 Lagrangian Model -- 2.4.3 Higher-Order Closure Model -- 2.4.4 Large-Eddy Simulation Model -- 2.5…Averaging Surface Characteristics -- 2.5.1 Averaging Using Effective Parameters -- 2.5.2 Flux-Averaging Models in Inhomogeneous Terrain -- References -- 3 Classification of Footprint Models -- 3.1…Analytical Footprint Models -- 3.1.1 The Schuepp et al. (1990) Approach -- 3.1.2 The Schmid and Oke (1990) approach -- 3.1.3 The Family of Horst and Weil's (1992) Analytical Solution -- 3.1.3.1 The Horst and Weil (1992, 1994) Approach -- 3.1.3.2 The Schmid (1994, 1997) Approaches -- 3.1.3.3 The Kaharabata et al. (1997) Approach -- 3.1.3.4 The Haenel and Grünhage (1999) approach -- 3.1.3.5 The Kormann and Meixner (2001) Approach -- 3.1.4 Analytical Solutions Based on Lagrangian Models -- 3.2…Lagrangian Simulations -- 3.2.1 The Leclerc and Thurtell (1990) Approach -- 3.2.2 The Sabelfeld-Rannik Approach -- 3.2.3 The Kljun et al. (2002) 3D Backward Lagrangian Footprint Model -- 3.3…Higher-Order Closure Footprint Models. , 3.4…Large-Eddy Simulation Models -- 3.5…Hybrid Footprint Models -- 3.5.1 LES-Driven Lagrangian Stochastic Models -- 3.5.1.1 The Prabha et al. (2008) Approach -- 3.5.1.2 The Cai and Leclerc (2007) and Cai et al. (2008) Approach -- 3.5.2 LES-Embedded Lagrangian Stochastic Models: The Steinfeld et al. (2008) Approach -- 3.5.3 Higher-Order Closure-Driven Lagrangian Simulation -- 3.5.3.1 The Luhar and Rao (1994) Approach -- 3.5.3.2 The Hsieh and Katul (2009) Approach -- 3.5.3.3 E- omega Model Closure-Driven Lagrangrian Simulation -- References -- 4 Footprint Studies -- 4.1…Footprint in the Atmospheric Boundary Layer -- 4.1.1 Tall Tower Footprints -- 4.1.2 The Influence of Coriolis Forces on Footprint -- 4.1.3 Flux Footprints in the Convective Boundary Layer -- 4.1.4 Footprint in the Roughness Sub-Layer of Plant Canopies -- 4.2…In-Canopy Footprints -- 4.3…Flux Footprint in Canopy Over Hills -- 4.4…Influence of Contrasting Adjoining Surfaces on Footprints -- 4.4.1 Role of Contrasting Thermal Land Surfaces on Fluxes and Footprints -- 4.4.2 Role of Clearcuts on Forest Fluxes/Footprints -- 4.4.3 Footprints in the Presence of a Transition from the Forest Leading Edge -- 4.5…Flux Footprints Over Complex Topography in Forests -- 4.6…Emissions of Odor and Reactive Trace Gas Fluxes Using the Flux Footprint Method -- 4.7…Footprints in Urban Areas -- References -- 5 Model Validation -- 5.1…Model Validation Against Other Models -- 5.2…Model Validation and Comparison Against Experimental Data -- 5.3…Model Validation with Natural Tracers -- 5.4…Classification of the Comparison Results -- References -- 6 Land Surface: Coupled Footprints -- 6.1…Grid Schema of Surface Characteristics -- 6.2…Determination of Surface Characteristics -- 6.2.1 Roughness Length -- 6.2.2 Remote-Sensing Data -- 6.3…Coupling Footprint Results with Surface Information -- References. , 7 Application of Footprint Models to Different Measurement Techniques -- 7.1…Profile Technique -- 7.1.1 Profile Technique with Three and More Measuring Levels -- 7.1.2 Profile Technique with Two Measuring Levels -- 7.1.3 Accuracy and Footprint Issues for Profile Technique -- 7.1.3.1 Accuracy of Profile Measurements -- 7.1.3.2 Footprint of Profile Measurements -- 7.2…Eddy--Covariance Technique -- 7.2.1 Basics of the Eddy-Covariance Method -- 7.2.2 1D Eddy-Covariance Method -- 7.2.3 Generalized Eddy-Covariance Method (3D) -- 7.2.4 Quality Control of Eddy-Covariance Data -- 7.3…Scintillometer Technique -- 7.4…Airborne Measurement Technique -- References -- 8 Practical Applications of Footprint Techniques -- 8.1…Selection of Flux Measurement Sites -- 8.2…Interpretation of Flux Data -- 8.2.1 Footprint Climatology -- 8.2.2 Covering the Area of Interest -- 8.2.3 Footprint-Dependent Data Quality Control -- 8.3…Upscaling Point Measurements Using Footprint Models -- 8.4…Additional Practical Application -- 8.4.1 Air Pollution Application and Trace Gas Fluxes -- 8.4.2 Wind-Energy Application -- 8.5…Easily Applicable Footprint Models -- 8.6…Limits of Footprint Application -- References -- 9 Looking Forward to the Next Generation of Footprint Models -- References -- Glossary -- About the Authors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Forests and forestry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (530 pages)
    Edition: 1st ed.
    ISBN: 9783319493893
    Series Statement: Ecological Studies ; v.229
    DDC: 577.30943
    Language: English
    Note: Intro -- Foreword -- Preface -- Contents -- List of Abbreviations -- Part I Introduction -- 1 History of the Waldstein Measuring Sites -- 1.1 Introduction -- 1.2 The Foundation of BITÖK and the Establishment of the Waldstein Sites -- 1.3 Research and Measuring Programs -- 1.3.1 BITÖK Research Projects -- 1.3.2 European Research Projects -- 1.3.3 German Research Projects -- 1.3.4 Permanent Measuring Program -- 1.4 Conclusions -- Reports -- References -- 2 Description of the Waldstein Measuring Site -- 2.1 Introduction -- 2.2 The Waldstein Area -- 2.3 Specific Details of the Measuring Sites -- 2.3.1 Waldstein-Weidenbrunnen -- 2.3.1.1 Forest Stand -- 2.3.1.2 Instrumentation -- 2.3.2 Waldstein-Pflanzgarten -- 2.3.3 Köhlerloh -- 2.4 Conclusions -- References -- Part II Studies of Long-Term Measurements -- 3 Climate, Air Pollutants, and Wet Deposition -- 3.1 Introduction -- 3.2 Material and Methods -- 3.2.1 Main Meteorological Elements and Climatological Observations -- 3.2.2 Air Pollution Measurements -- 3.2.3 Wet Deposition -- 3.3 Results and Discussion -- 3.3.1 Climatology -- 3.3.1.1 Air Temperature -- 3.3.1.2 Precipitation -- 3.3.2 Air Pollutants O3, SO2, and NOx -- 3.3.2.1 Ozone -- 3.3.2.2 Trend Analysis -- 3.3.2.3 Annual O3 Variation and the Accumulated Exposure Over a Threshold of 40 ppb (AOT) -- 3.3.2.4 SO2 and NOx -- 3.3.3 Fog Deposition Fluxes -- 3.3.4 Wet Deposition -- 3.4 Conclusions -- References -- 4 Long-Term Carbon and Water Vapour Fluxes -- 4.1 Introduction -- 4.2 Methods -- 4.2.1 Site Description and Measurement Set-up -- 4.2.2 Data Processing -- 4.2.2.1 Turbulent Flux Processing -- 4.2.2.2 Meteorological Data -- 4.2.2.3 Gap-Filling -- 4.3 Results and Discussion -- 4.3.1 Energy Balance Closure of EC Measurements -- 4.3.2 Adaptations of the Gap-Filling Method for NEE -- 4.3.3 Carbon and Water Vapour Fluxes -- 4.3.3.1 Carbon Exchange. , 4.3.3.2 Water Vapour Fluxes -- 4.3.4 Factors Influencing the Carbon and Water Vapour Exchange -- 4.3.4.1 Development of the Spruce Forest at Waldstein Site -- 4.3.4.2 Instrumental and Methodological Issues -- 4.3.4.3 Influential Factors of Regional Relevance -- 4.4 Conclusion -- References -- Part III Experimental Studies of Energy and Matter Fluxes -- 5 Sap Flow Measurements -- 5.1 Introduction -- 5.2 Material and Methods -- 5.2.1 Study Sites -- 5.2.2 Sap Flow Measuring Technique -- 5.2.3 Modeling -- 5.2.4 Eddy Covariance Measurements -- 5.3 Results and Discussions -- 5.3.1 Tree Sap Flow and Canopy Transpiration -- 5.3.2 Tree Profile Measurements -- 5.4 Conclusions -- References -- 6 Coherent Structures and Flux Coupling -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.2.1 Detection Algorithm and Conditional Flux Computation -- 6.2.2 Adapted Experimental Setup -- 6.3 Results and Discussions -- 6.3.1 Exchange Regimes for Vertical Coupling -- 6.3.2 Exchange Regimes for Horizontal Coupling -- 6.3.3 Implementation for Quantifying Daytime Sub-canopy Respiration -- 6.3.4 Implications for Spatial Heterogeneity of Sub-canopy Carbon Dioxide Concentrations, Gradients, and Horizontal Advection -- 6.4 Conclusions -- References -- 7 Dynamics of Water Flow in a Forest Soil: Visualization and Modelling -- 7.1 Introduction -- 7.2 Material and Methods -- 7.2.1 Measurements of Matric Potentials -- 7.2.2 Modelling Matric Potentials and Soil Water Fluxes -- 7.2.3 Comparison Between Measured and Modelled Matric Potentials -- 7.2.4 Visualizing Soil Water Fluxes -- 7.3 Results and Discussion -- 7.3.1 Matric Potential -- 7.3.1.1 Temporal Variability -- 7.3.1.2 Hydraulic Redistribution -- 7.3.1.3 Complexity of Measured and Modelled Matric Potentials -- 7.3.2 Soil Water Fluxes -- 7.3.2.1 Flow Patterns at Profile Scale and Their Influence on Soil Chemistry. , 7.3.2.2 Modelling Results and Preferential Flow at Catchment Scale -- 7.4 Conclusions -- References -- 8 Trace Gas Exchange at the Forest Floor -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Site Description -- 8.2.1.1 Wind, Temperature, and Radiation Measurements -- 8.2.1.2 Trace Gas Measurements -- 8.2.2 Modelling of Fluxes Near the Forest Floor -- 8.2.2.1 Parameterization According to Richter and Skeib (1984, 1991) -- 8.2.2.2 Parameterization According to Foken (1979, 1984) -- 8.3 Results and Discussion -- 8.3.1 Driving Forces of Subcanopy Exchange -- 8.3.1.1 Radiation -- 8.3.1.2 Temperature Profiles -- 8.3.1.3 Wind Profiles -- 8.3.2 Comparison of Measured and Modelled Fluxes -- 8.3.2.1 Friction Velocity -- 8.3.2.2 Sensible Heat Flux -- 8.3.2.3 Stability -- 8.3.3 Comparison of Modelled and Chamber Fluxes -- 8.3.3.1 Radon Fluxes -- 8.3.3.2 Carbon Dioxide Fluxes -- 8.3.4 Determination of the Coupling Situation at the Forest Floor -- 8.3.4.1 Water Vapor -- 8.3.4.2 Carbon Dioxide -- 8.3.5 Reactive Trace Gases -- 8.3.5.1 Ozone Fluxes -- 8.4 Conclusions -- References -- 9 Reactive Trace Gas and Aerosol Fluxes -- 9.1 Introduction -- 9.2 Materials and Methods -- 9.2.1 Trace Gas Flux Instrumentation -- 9.2.2 Aerosol Flux Instrumentation -- 9.3 Results and Discussion -- 9.3.1 Reactive Trace Gas Flux Measurements -- 9.3.1.1 Ozone Fluxes -- 9.3.1.2 NOx Fluxes -- 9.3.1.3 Fluxes of Additional Reactive Trace Gases -- 9.3.2 Aerosol Flux Measurements -- 9.3.2.1 Aerosol Number Fluxes -- 9.3.2.2 Size-Resolved Number Fluxes -- 9.3.2.3 Chemically Speciated Aerosol Fluxes -- 9.3.3 Comparison of Flux Observations and Models -- 9.4 Conclusions -- References -- 10 Isotope Fluxes -- 10.1 Introduction -- 10.2 Materials and Methods -- 10.2.1 Balances of CO2 and 13CO2 -- 10.2.2 NEE Partitioning and 13CO2 Iso-fluxes. , 10.2.3 Hyperbolic Relaxed Eddy Accumulation Method -- 10.2.4 HREA Measuring Systems -- 10.2.5 Measurement Sites and Campaigns -- 10.3 Results and Discussion -- 10.3.1 Differences in HREA Samples of CO2 and δ13C Up- and Downdrafts -- 10.3.2 CO2 Fluxes and 13CO2 Iso-fluxes -- 10.3.3 13CO2 Signatures and NEE Partitioning -- 10.3.4 Structure of CO2 Exchange Mechanisms over Forests -- 10.4 Conclusions -- References -- 11 Influence of Low-Level Jets and Gravity Waves on Turbulent Fluxes -- 11.1 Introduction -- 11.2 Material and Methods -- 11.2.1 Experimental Setup -- 11.2.2 Instruments: Principles of Operation -- 11.2.2.1 Windprofiler/SODAR -- 11.2.2.2 RASS -- 11.2.3 Data Calculation -- 11.2.4 Meteorological Situation -- 11.3 Results and Discussion -- 11.3.1 Low-Level Jets -- 11.3.2 Gravity Waves -- 11.3.2.1 Rotary Spectrum -- 11.3.2.2 Hodograph Analysis -- 11.3.2.3 Stokes Parameter Spectra -- 11.3.2.4 Gravity Wave Characteristics -- 11.4 Conclusions -- References -- 12 Development of Flux Data Quality Tools -- 12.1 Introduction -- 12.2 Materials and Methods -- 12.2.1 Data for This Investigation -- 12.2.2 Integral Turbulence Characteristics -- 12.2.3 Footprint Models -- 12.2.4 Energy Balance Closure -- 12.3 Results and Discussions -- 12.3.1 Integral Turbulence Characteristics -- 12.3.2 Footprints and Data Quality -- 12.3.2.1 Zero-Plane Displacement -- 12.3.2.2 Characteristics of the Underlying Surface -- 12.3.2.3 Footprint Climatology -- 12.3.2.4 Linking Footprint and Flux Data Quality -- 12.3.2.5 Coordinate Rotation -- 12.3.3 Energy Balance Closure -- 12.4 Conclusions -- References -- 13 Interaction Forest-Clearing -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Special Installations at the Forest Edge -- 13.2.2 Methods Applied for This Investigation -- 13.2.2.1 Turbulence Data -- 13.2.2.2 Wavelet Analysis -- 13.3 Results and Discussions. , 13.3.1 Horizontal and Vertical Fields at the Forest Edge -- 13.3.2 Coupling Regime -- 13.3.3 Coherent Structures -- 13.3.4 Penetration of Large-Scale Coherent Structures -- 13.3.5 Energy Balance Closure Problem -- 13.4 Conclusions -- References -- 14 Forest Climate in Vertical and Horizontal Scales -- 14.1 Introduction -- 14.2 Material and Methods -- 14.2.1 Vertical Profile Measurements -- 14.2.1.1 Long-Term Measurements -- 14.2.1.2 EGER Project -- 14.2.1.3 Vertical Coupling Regimes -- 14.2.2 Horizontal Profile Measurements -- 14.2.2.1 Advection Measurements -- 14.2.2.2 Horizontal Mobile Measuring System -- 14.3 Results and Discussions -- 14.3.1 Microclimate Within and Above a Dense Forest -- 14.3.1.1 Vertical (Turbulent) Exchange -- 14.3.1.2 Horizontal and Vertical Advection -- 14.3.2 Microclimate at a Forest Edge -- 14.4 Conclusions -- References -- 15 Catchment Evapotranspiration and Runoff -- 15.1 Introduction -- 15.2 Materials and Methods -- 15.2.1 Hydrological Characterization of the Catchment -- 15.2.1.1 Data -- 15.2.1.2 Statistical Approaches -- 15.2.2 Principal Component Analysis of Time Series -- 15.3 Results and Discussion -- 15.3.1 Long-Term Budgets -- 15.3.1.1 Reliability of Long-Term Budget Data -- 15.3.1.2 Role of Vegetation -- 15.3.1.3 Relation to Residence Time and Size of the Groundwater Store -- 15.3.2 Short-Term Dynamics -- 15.3.2.1 Hydrological Signals Generated in the Topsoil -- 15.3.2.2 Hydrological Signals Propagating Through the Subsoil -- 15.3.3 Evapotranspiration in Hydrological and Hydrogeological Model Approaches -- 15.4 Conclusions -- References -- Part IV Modelling Studies of Energy and Matter Fluxes -- 16 Modeling of Energy and Matter Exchange -- 16.1 Introduction -- 16.2 Materials and Methods -- 16.2.1 Model Descriptions -- 16.2.1.1 FLAME -- 16.2.1.2 ACASA -- 16.2.1.3 STANDFLUX and SVAT-CN. , 16.2.2 Model Drivers and Input Parameters.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg
    Keywords: Physical geography ; Meteorology ; Geography ; Weights and measures ; Climatic changes ; Ecology ; Messtechnik ; Meteorologie ; Mikroklimatologie ; Angewandte Meteorologie ; Mikrometeorologie
    Description / Table of Contents: Gegenstand dieses Buches sind die atmosphärischen Vorgänge im unmittelbaren Lebensraum des Menschen, also in den unteren 100-1000 Metern der Atmosphäre und in Gebieten mit nur einigen Kilometern Ausdehnung. Die zweite Auflage wurde an die Entwicklungen der letzten Jahre angepasst und teilweise durch neuere Forschungsergebnisse erweitert. Damit bietet das Buch Grundlagen insbesondere für angewandte meteorologische Fachgebiete wie Biometeorologie, Agrarmeteorologie, Hydrometeorologie, Umweltmeteorologie und technische Meteorologie sowie für die Biogeochemie mit ausgewählten Beispielen aus diesen Gebieten. Ein wichtiger Schwerpunkt sind dabei die Transportprozesse und Stoffflüsse zwischen Atmosphäre und Erdoberfläche, wobei bewachsene und heterogene Unterlagen eine besondere Beachtung finden. Der Autor behandelt die Teilgebiete Theorie, Messtechnik, experimentelle Verfahren und Modellierung so, dass sie jeweils auch eigenständig für Lehre, Forschung und Praxis genutzt werden können.
    Type of Medium: Online Resource
    Pages: Online-Ressource , v.: digital
    Edition: Zweite, überarbeitete und erweiterte Auflage
    ISBN: 9783540382041
    DDC: 550
    RVK:
    RVK:
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Hochschulschrift ; Atmosphärische Turbulenz ; Energieübertragung ; Atmosphärische Grenzschicht ; Austausch ; Energiebilanz ; Atmosphärische Turbulenz ; Messung
    Type of Medium: Book
    Pages: 287 S. , Ill., graph. Darst.
    ISBN: 3881482636
    Series Statement: Berichte des Deutschen Wetterdienstes 180
    RVK:
    Language: German
    Note: Abstract in English and German , Zugl.: Berlin, Humboldt-Univ., Diss. B, 1990
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Atmospheric sciences. ; Meteorology. ; Air pollution. ; Remote sensing. ; Physical measurements. ; Measurement . ; Ecosystems. ; Atmosphäre ; Meteorologische Beobachtung ; Messgerät ; Messung ; Fernerkundung ; In situ ; Meteorologie ; Wetter ; Wettervorhersage ; Sensor ; Methode
    Description / Table of Contents: Basics of Atmospheric Measurement Techniques -- In-situ Measurement Techniques -- Remote Sensing Techniques (Ground-Based) -- Remote Sensing Techniques (Space- and Aircraft-Based) -- Complex Measurements - Methods and Applications -- Measurements Networks.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(LVIII, 1748 p. 752 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030521714
    Series Statement: Springer Handbooks
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Atmospheric science. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1761 pages)
    Edition: 1st ed.
    ISBN: 9783030521714
    Series Statement: Springer Handbooks Series
    DDC: 551.510287
    Language: English
    Note: Intro -- Foreword -- Preface -- About the Editor -- About the Authors -- Contents -- List of Abbreviations -- List of Symbols -- Part A Basics of Atmospheric Measurement Techniques -- 1 Introduction to Atmospheric Measurements -- 1.1 Measuring Meteorological Elements -- 1.2 History -- 1.3 The Structure of the Atmosphere -- 1.4 Devices, Systems, and Typical Specifications -- 1.5 Applications -- 1.6 Future Developments -- 1.7 Further Reading -- References -- 2 Principles of Measurements -- 2.1 Basics of Measurements -- 2.2 History -- 2.3 Errors in Measurement -- 2.4 Regression Analysis -- 2.5 Time Domain and Frequency Domain for Signals and Systems -- 2.6 Dynamics of Measuring Systems -- 2.7 Analog and Digital Signal Processing -- 2.8 Hardware for Digital Measurement Systems -- 2.9 Further Reading -- References -- 3 Quality Assurance and Control -- 3.1 Principles and Definition -- 3.2 History -- 3.3 Elements of Quality Management -- 3.4 Application -- 3.5 Future Developments -- 3.6 Further Reading -- References -- 4 Standardization in Atmospheric Measurements -- 4.1 Background and Definitions -- 4.2 History -- 4.3 Principles and Procedures -- 4.4 Standardization in the Field of Atmospheric Measurements -- 4.5 Future Developments -- 4.6 Further Reading -- References -- 5 Physical Quantities -- 5.1 Selection of Parameters -- 5.2 History and Thermodynamic Standards -- 5.3 Units and Constants -- 5.4 Parameters of Air, Water Vapor, Water, and Ice -- 5.5 Parameterization of Optical Properties of Clouds -- 5.6 Absorption Coefficients for Water Vapor, Ozone, and Carbon Dioxide -- 5.7 Parameters of Soil -- 5.8 Time and Astronomical Quantities -- 5.9 Tables in Other Chapters -- 5.10 Future Developments -- 5.11 Further Reading -- References -- Part B In situ Measurement Techniques -- 6 Ground-Based Platforms -- 6.1 Principles of Platforms -- 6.2 History. , 6.3 Theory -- 6.4 Platforms and Sensor Installations -- 6.5 Specification -- 6.6 Quality Control and Safety -- 6.7 Maintenance -- 6.8 Applications -- 6.9 Future Developments -- 6.10 Further Readings -- References -- 7 Temperature Sensors -- 7.1 Measurement Principles and Parameters -- 7.2 History -- 7.3 Theory -- 7.4 Devices and Systems -- 7.5 Specifications -- 7.6 Quality Control -- 7.7 Maintenance -- 7.8 Applications -- 7.9 Future Developments -- 7.10 Further Reading -- References -- 8 Humidity Sensors -- 8.1 Measurement Principlesand Parameters -- 8.2 History -- 8.3 Theory -- 8.4 Devices and Systems -- 8.5 Specifications -- 8.6 Quality Control -- 8.7 Maintenance -- 8.8 Application -- 8.9 Future Developments -- 8.10 Further Readings -- References -- 9 Wind Sensors -- 9.1 Measurement Principles and Parameters -- 9.2 History -- 9.3 Theory -- 9.4 Devices and Systems -- 9.5 Specifications -- 9.6 Quality Control -- 9.7 Maintenance -- 9.8 Application -- 9.9 Future Developments -- 9.10 Further Reading -- References -- 10 Pressure Sensors -- 10.1 Measurement Principles and Parameters -- 10.2 History -- 10.3 Theory -- 10.4 Devices and Systems -- 10.5 Specifications -- 10.6 Quality Control -- 10.7 Maintenance -- 10.8 Application -- 10.9 Future Developments -- 10.10 Further Reading -- References -- 11 Radiation Sensors -- 11.1 Measurement Principles and Parameters -- 11.2 History -- 11.3 Theory -- 11.4 Devices and Systems -- 11.5 Specifications -- 11.6 Quality Control -- 11.7 Maintenance -- 11.8 Applications -- 11.9 Future Developments -- 11.10 Further Reading -- References -- 12 In-situ Precipitation Measurements -- 12.1 Measurement Principles and Parameters -- 12.2 History -- 12.3 Theory -- 12.4 Devices and Systems -- 12.5 Specifications -- 12.6 Quality Control, Uncertainty, and Calibration -- 12.7 Maintenance -- 12.8 Application -- 12.9 Future Developments. , 12.10 Further Reading -- References -- 13 Visibility Sensors -- 13.1 Measurement Principles and Parameters -- 13.2 History -- 13.3 Theory -- 13.4 Devices and Systems -- 13.5 Specifications -- 13.6 Quality Control -- 13.7 Maintenance -- 13.8 Application -- 13.9 Future Developments -- 13.10 Further Reading -- References -- 14 Electricity Measurements -- 14.1 Measurement Principles and Parameters -- 14.2 History -- 14.3 Theory -- 14.4 Devices and Systems -- 14.5 Specifications -- 14.6 Quality Control -- 14.7 Maintenance -- 14.8 Applications -- 14.9 Future Developments -- 14.10 Further Reading -- References -- 15 Radioactivity Sensors -- 15.1 Measurement Principles and Parameters -- 15.2 History -- 15.3 Theory -- 15.4 Devices and Systems -- 15.5 Specifications -- 15.6 Quality Control -- 15.7 Maintenance -- 15.8 Application -- 15.9 Future Developments -- 15.10 Further Reading -- References -- 16 Gas Analysers and Laser Techniques -- 16.1 Measurement Principles and Parameters -- 16.2 History -- 16.3 Theory -- 16.4 Devices and Systems -- 16.5 Specifications -- 16.6 Quality Control -- 16.7 Maintenance -- 16.8 Applications -- 16.9 Future Developments -- 16.10 Further Reading -- References -- 17 Measurement of Stable Isotopes in Carbon Dioxide, Methane, and Water Vapor -- 17.1 Measurement Principles and Parameters -- 17.2 History of Stable Isotope Measurements in Atmospheric CO2, CH4 and H2O -- 17.3 Theory -- 17.4 Devices and Systems -- 17.5 Specifications -- 17.6 Quality Control -- 17.7 Maintenance -- 17.8 Application -- 17.9 Future Developments -- 17.10 Further Readings -- References -- 18 Measurement of Fundamental Aerosol Physical Properties -- 18.1 Measurement Principles and Parameters -- 18.2 History -- 18.3 Theory -- 18.4 Devices and Systems -- 18.5 Specifications -- 18.6 Quality Control -- 18.7 Maintenance -- 18.8 Application. , 18.9 Future Developments -- 18.10 Further Reading -- References -- 19 Methods of Sampling Trace Substances in Air -- 19.1 Measurement Principles and Parameters -- 19.2 History -- 19.3 Theory -- 19.4 Devices and Systems -- 19.5 Specifications -- 19.6 Quality Control -- 19.7 Maintenance -- 19.8 Application -- 19.9 Future Developments -- 19.10 Further Reading -- References -- 20 Optical Fiber-Based Distributed Sensing Methods -- 20.1 Measurement Principles and Parameters -- 20.2 History -- 20.3 Theory -- 20.4 Devices -- 20.5 Specifications -- 20.6 Quality Control -- 20.7 Maintenance -- 20.8 Applications -- 20.9 Future Developments -- 20.10 Further Reading -- References -- 21 Odor Measurements -- 21.1 Measurement Principles and Parameters -- 21.2 History -- 21.3 Theory -- 21.4 Devices and Systems -- 21.5 Specifications -- 21.6 Quality Control -- 21.7 Maintenance -- 21.8 Application -- 21.9 Future Developments -- 21.10 Further Readings -- References -- 22 Visual Observations -- 22.1 Principles of Visual Observations -- 22.2 History -- 22.3 Theory -- 22.4 Observed Parameters -- 22.5 Quality Control -- 22.6 Application- -- 22.7 Future Developments -- 22.8 Further Readings -- References -- Part C Remote-Sensing Techniques (Ground-Based) -- 23 Sodar and RASS -- 23.1 Measurement Principles and Parameters -- 23.2 History -- 23.3 Theory -- 23.4 Devices and Systems -- 23.5 Specifications -- 23.6 Quality Control -- 23.7 Maintenance -- 23.8 Applications -- 23.9 Future Developments -- 23.10 Further Reading -- References -- 24 Backscatter Lidar for Aerosol and Cloud Profiling -- 24.1 Measurement Prinziples and Parameters -- 24.2 History -- 24.3 Theory -- 24.4 Devices and Systems -- 24.5 Specifications -- 24.6 Quality Control -- 24.7 Maintenance -- 24.8 Applications -- 24.9 Further Reading -- References -- 25 Raman Lidar for Water-Vapor and Temperature Profiling. , 25.1 Measurement Principles and Parameters -- 25.2 History -- 25.3 Theory -- 25.4 Devices and Systems -- 25.5 Specifications -- 25.6 Quality Control -- 25.7 Maintenance -- 25.8 Applications -- 25.9 Future Developments -- 25.10 Further Reading-2 -- References -- 26 Water Vapor Differential Absorption Lidar -- 26.1 Measurement Principles and Parameters -- 26.2 History -- 26.3 Theory -- 26.4 Devices and Systems -- 26.5 Specifications -- 26.6 Quality Control -- 26.7 Maintenance -- 26.8 Applications -- 26.9 Future Developments -- 26.10 Further Readings -- References -- 27 Doppler Wind Lidar -- 27.1 Measurement Principles and Parameters -- 27.2 History -- 27.3 Theory -- 27.4 Devices and Systems -- 27.5 Specifications -- 27.6 Quality Control -- 27.7 Maintenance -- 27.8 Applications -- 27.9 Future Developments -- 27.10 Further Readings -- References -- 28 Spectrometers -- 28.1 Measurement Principles and Parameters -- 28.2 History -- 28.3 Theory -- 28.4 Devices and Systems -- 28.5 Specifications -- 28.6 Quality Control -- 28.7 Maintenance -- 28.8 Applications -- 28.9 Future Developments -- 28.10 Further Readings -- References -- 29 Passive Solar and Microwave Spectral Radiometers -- 29.1 Measurement Principles and Parameters -- 29.2 History -- 29.3 Theory -- 29.4 Devices and Systems -- 29.5 Specifications -- 29.6 Quality Control -- 29.7 Maintenance -- 29.8 Application -- 29.9 Future Developments -- 29.10 Further Readings -- References -- 30 Weather Radar -- 30.1 Measurement Principles and Parameters -- 30.2 History -- 30.3 Theory -- 30.4 Radar Systems -- 30.5 Specifications -- 30.6 Quality Control -- 30.7 Maintenance -- 30.8 Applications -- 30.9 Future Developments -- 30.10 Further Reading -- References -- 31 Radar Wind Profiler -- 31.1 Measurement Principles and Parameters -- 31.2 History -- 31.3 Theory -- 31.4 Systems -- 31.5 Specifications. , 31.6 Quality Control.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Aufsatzsammlung ; Festschrift ; Klimatologie ; Meereskunde
    Type of Medium: Book
    Pages: 272 S , Ill., graph. Darst., Kt
    ISBN: 3000110437
    Language: German , English
    Note: Beitr. teilw. engl., teilw. dt
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Angewandte Meteorologie ; Mikrometeorologie ; Angewandte Meteorologie ; Mikrometeorologie
    Type of Medium: Book
    Pages: XVII, 289 S , Ill., graph. Darst., Tab , 24 cm
    ISBN: 3540003223
    DDC: 31
    RVK:
    RVK:
    Language: German
    Note: Literaturverz. S. [255] - 277
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer
    Keywords: Earth sciences ; Meteorology ; Atmospheric sciences ; Physical geography ; Earth Sciences ; Mikrometeorologie ; Mikroklimatologie
    Description / Table of Contents: The book focusses on atmospheric processes, which directly affect human environments within the lowest 100-1000 meters of the atmosphere over regions of only a few kilometres in extent. The book is the translation into English of the third edition of the German book “Applied Meteorology - Micrometeorological Methods”. It presents, with selected examples, the basics of micrometeorology applied to disciplines such as biometeorology, agrometeorology, hydrometeorology, technical meteorology, environmental meteorology, and biogeosciences. The important issues discussed in this book are the transport processes and fluxes between the atmosphere and the underlying surface. Vegetated and heterogeneous surfaces are special subjects. The author covers the areas of theory, measurement techniques, experimental methods, and modelling all in ways that can be used independently in teaching, research, or practical applications
    Type of Medium: Online Resource
    Pages: Online-Ressource (XXI, 362 p. 124 illus, online resource)
    Edition: 2nd ed. 2017
    ISBN: 9783642254406
    Series Statement: SpringerLink
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The exchange of carbon dioxide (CO2) between the atmosphere and a forest after disturbance by wind throw in the western Russian taiga was investigated between July and October 1998 using the eddy covariance technique. The research area was a regenerating forest (400 m × 1000 m), in which all trees of the preceding generation were uplifted during a storm in 1996. All deadwood had remained on site after the storm and had not been extracted for commercial purposes. Because of the heterogeneity of the terrain, several micrometeorological quality tests were applied. In addition to the eddy covariance measurements, carbon pools of decaying wood in a chronosequence of three different wind throw areas were analysed and the decay rate of coarse woody debris was derived.During daytime, the average CO2 uptake flux was −3 µmol m−2s−1, whereas during night-time characterised by a well-mixed atmosphere the rates of release were typically about 6 µmol m−2s−1. Suppression of turbulent fluxes was only observed under conditions with very low friction velocity (u* ≤ 0.08 ms−1). On average, 164 mmol CO2 m−2d−1 was released from the wind throw to the atmosphere, giving a total of 14.9 mol CO2 m−2 (180 g CO2 m−2) released during the 3-month study period.The chronosequence of dead woody debris on three different wind throw areas suggested exponential decay with a decay coefficient of −0.04 yr−1. From the magnitude of the carbon pools and the decay rate, it is estimated that the decomposition of coarse woody debris accounted for about a third of the total ecosystem respiration at the measurement site. Hence, coarse woody debris had a long-term influence on the net ecosystem exchange of this wind throw area.From the analysis performed in this work, a conclusion is drawn that it is necessary to include into flux networks the ecosystems that are subject to natural disturbances and that have been widely omitted into considerations of the global carbon budget. The half-life time of about 17 years for deadwood in the wind throw suggests a fairly long storage of carbon in the ecosystem, and indicates a very different long-term carbon budget for naturally disturbed vs. commercially managed forests.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...