GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-03-15
    Description: F/S Polarstern cruise ARK-XXVI/3, also known as TransArc (Trans-Arctic survey of the Arctic Ocean in transition). From 5. August (Tromsö) to 7. October (Bremerhaven) a total of 1254 samples were analyzed from 56 stations. Seawater samples were sampled throughout the water column according to Dickson et al. (2007) and analyzed on board within hours. Data quality is discussed. Resulting data is correctable through the use of certified reference material (CRM), after which data is deemed to be of reasonably high quality. All samples and data were sampled, analyzed and processed by Adam Ulfsbo and Ylva Ericson (University of Gothenburg, Sweden).
    Keywords: Alkalinity, total; Aragonite saturation state; Arctic Ocean; ARK-XXVI/3; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coulometric titration; CTD, SEA-BIRD SBE 911plus, SN T5027-C3290; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Elevation of event; EPOCA; European Project on Ocean Acidification; Event label; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laptev Sea; Latitude of event; Longitude of event; MULT; Multiple investigations; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Polarstern; Potentiometric open-cell titration; Pressure, water; PS78/201-1; PS78/201-4; PS78/202-1; PS78/203-4; PS78/205-1; PS78/205-4; PS78/207-2; PS78/208-2; PS78/209-2; PS78/209-4; PS78/210-1; PS78/211-2; PS78/212-2; PS78/212-5; PS78/214-1; PS78/216-1; PS78/216-3; PS78/218-2; PS78/218-7; PS78/219-1; PS78/220-1; PS78/220-4; PS78/221-1; PS78/222-2; PS78/222-5; PS78/223-1; PS78/224-1; PS78/225-1; PS78/226-1; PS78/226-3; PS78/227-2; PS78/227-5; PS78/228-1; PS78/229-1; PS78/230-2; PS78/230-5; PS78/232-1; PS78/233-1; PS78/234-1; PS78/235-2; PS78/235-6; PS78/239-2; PS78/239-5; PS78/240-1; PS78/241-1; PS78/242-1; PS78/243-1; PS78/244-1; PS78/245-2; PS78/245-5; PS78/246-1; PS78/247-1; PS78/248-1; PS78/249-1; PS78/250-2; PS78/250-5; PS78/251-1; PS78/252-1; PS78/253-1; PS78/254-1; PS78/257-1; PS78/257-5; PS78/258-1; PS78/259-1; PS78/271-1; PS78/272-2; PS78/272-3; PS78/273-1; PS78/274-1; PS78/276-1; PS78/276-4; PS78/277-1; PS78/278-1; PS78/280-1; PS78/280-4; PS78 TransArc; Salinity; Spectrophotometry; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 18379 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes–summarized by the term ocean acidification (OA)–could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a “long-term mesocosm” approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-02
    Description: The marine CO2 system in Tempelfjorden (Svalbard) was investigated between August 2015 and December 2017 using total alkalinity, pH, temperature, salinity, oxygen isotopic ratio, and nutrient data. Primary production resulted in the largest changes that were observed in the partial pressure of CO2 (pCO2, 140 μatm) and the saturation state of aragonite (ΩAr, 0.9). Over the period of peak freshwater discharge (June to August), the freshwater addition and air-sea CO2 uptake (on average 15.5 mmol m−2 day−1 in 2017) governed the surface pCO2. About one fourth of the uptake was driven by the freshening. The sensitivity of ΩAr to the freshwater addition was investigated using robust regressions. If the effect of air-sea CO2 exchange was removed from ΩAr, a freshwater fraction larger than 50% (lower range of uncertainty) was needed to provide aragonite undersaturated waters. This study shows that ΩAr and freshwater fraction relationships that are derived from regression techniques and the interpretation thereof are sensitive to the effect of air-sea CO2 exchange. Since the freshening in itself only drives a fraction of the air-sea CO2 uptake, studies that do not account for this exchange will overestimate the impact of freshwater on ΩAr. Finally, in the summer an excess in the salinity normalized dissolved inorganic carbon, corrected for aerobic primary production/respiration, of on average 86 μmol kg−1 was found in the deepest water of the fjord. This excess is suggested to be a result of enhanced CO2 uptake and brine release during the period of sea ice growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-13
    Description: Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes–summarized by the term ocean acidification (OA)–could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a “long-term mesocosm” approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research: Oceans, Wiley, 119(4), pp. 2312-2326, ISSN: 0148-0227
    Publication Date: 2014-06-03
    Description: Concentrations of dissolved inorganic carbon (DIC), total alkalinity (TA), nutrients, and oxygen in subsurface waters of the central Arctic Ocean have been investigated for conceivable time trends over the last two decades. Data from six cruises (1991–2011) that cover the Nansen, Amundsen, and Makarov Basins were included in this analysis. In waters deeper than 2000 m, no statistically significant trend could be observed for DIC, TA, phosphate, or nitrate, but a small rate of increase in apparent oxygen utilization (AOU) was noticeable. For the individual stations, differences in concentration of each property were computed between the mean concentrations in the Arctic Atlantic Water (AAW) or the upper Polar Deep Water (uPDW), i.e., between about 150 and 1400 m depth, and in the deep water (assumed invariable over time). In these shallower water layers, we observe significant above-zero time trends for DIC, in the range of 0.6–0.9 µmol kg-1 yr-1 (for AAW) and 0.4–0.6 µmol kg-1 yr-1 (for uPDW). No time trend in nutrients could be observed, indicating no change in the rate of organic matter mineralization within this depth range. Consequently, the buildup of DIC is attributed to increasing concentrations of anthropogenic carbon in the waters flowing into these depth layers of the Arctic Ocean. The resulting rate of increase of the column inventory of anthropogenic CO2 is estimated to be between 0.6 and 0.9 mol C m-2 yr-1, with distinct differences between basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...