GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Hochschulschrift ; Phytoplankton ; Meeresökosystem
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (79 Seiten = 7 MB) , Illustrationen, Graphen
    Edition: 2021
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (60 Seiten = 3,2 MB) , Illustrationen, Graphen
    Edition: 2022
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Engel, Friederike G; Lewandowska, Aleksandra M; Eggers, Sarah Lena; Matthiessen, Birte (2017): Manipulation of Non-random Species Loss in Natural Phytoplankton: Qualitative and Quantitative Evaluation of Different Approaches. Frontiers in Marine Science, 4, https://doi.org/10.3389/fmars.2017.00317
    Publication Date: 2023-07-09
    Description: Ecological research in recent decades revealed that species loss has a predominantly negative effect on ecosystem functioning and stability. Most of these studies were based on random species loss scenarios, but extinctions in nature are not random. Recent experimental studies using macroscopic communities largely advanced knowledge about the effects of non-random species loss. However, in microscopic communities like the phytoplankton, implementing realistic species loss scenarios is challenging and experimental data are scarce. Creating more realistic experiments to study the role of phytoplankton diversity for ecosystem functioning is particularly important, as they provide up to 50% of global primary productivity, form the basis of all pelagic food webs, and are important for biogeochemical cycling. In this study, we experimentally tested and evaluated three methods for non-random species loss in a natural marine phytoplankton community. Dilution, filtration, and heat stress removed the targeted rare, large, and sensitive species, respectively. All these species groups are extremely vulnerable to extinction in future climate scenarios and play important roles in the communities. Dilution and filtration with a fine mesh additionally decreased initial biomass, which increased the variability of species left in the respective replicates. The methods tested in this study can be used to non-randomly manipulate phytoplankton species diversity in communities used for experiments. However, in studies where species identities are more important than species richness, the dilution and filtration methods should be modified to eliminate the effect of decreasing initial biomass.
    Keywords: Apedinella radians, biovolume; Asterionella formosa, biovolume; Attheya decora, biovolume; Biovolume; Brockmanniella brockmannii, biovolume; Cell; Ceratium fusus, biovolume; Chaetoceros spp., biovolume; Coelastrum sp., biovolume; Cylindrotheca closterium, biovolume; Detonula confervacea, biovolume; Diatomaceae centric, biovolume; Dictyocha speculum, biovolume; Dinobryon divergens, biovolume; Dinobryon faculiferum, biovolume; Dissimilarity index; Ditylum brightwellii, biovolume; Ebria tripartita, biovolume; Eutreptiella sp., biovolume; Fragilaria sp., biovolume; Gymnodinium sp., biovolume; Gyrodinium sp., biovolume; Heterocapsa rotundata, biovolume; Identification; Licmophora sp., biovolume; Navicula spp., biovolume; Nitzschia microcephala, biovolume; Pielou evenness index; Plagioselmis sp., biovolume; Pseudo-nitzschia pungens, biovolume; Pseudopedinella sp., biovolume; Replicate; Sampling; Scenedesmus sp., biovolume; Shannon Diversity Index; Skeletonema costatum, biovolume; Snowella sp., biovolume; Species richness; Teleaulax sp., biovolume; Tetraedron minimum, biovolume; Thalassionema nitzschioides, biovolume; Thalassiosira rotula, biovolume; Thalassiosira spp., biovolume; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 1858 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-01
    Description: First-year sea-ice thickness, draft, salinity, temperature, and density were measured during near-weekly surveys at the main first-year ice coring site (MCS-FYI) during the MOSAiC expedition (legs 1 to 4). The ice cores were extracted either with a 9-cm (Mark II) or 7.25-cm (Mark III) internal diameter ice corers (Kovacs Enterprise, US). This data set includes data from 23 coring site visits and were performed from 28 October 2019 to 29 July 2020 at coring locations within 130 m to each other in the MOSAiC Central Observatory. During each coring event, ice temperature was measured in situ from a separate temperature core, using Testo 720 thermometers in drill holes with a length of half-core-diameter at 5-cm vertical resolution. Ice bulk practical salinity was measured from melted core sections at 5-cm resolution using a YSI 30 conductivity meter. Ice density was measured using the hydrostatic weighing method (Pustogvar and Kulyakhtin, 2016) from a density core in the freezer laboratory onboard Polarstern at the temperature of –15°C. Relative volumes of brine and gas were estimated from ice salinity, temperature and density using Cox and Weeks (1983) for cold ice and Leppäranta and Manninen (1988) for ice warmer than –2°C. The data contains the event label (1), time (2), and global coordinates (3,4) of each coring measurement and sample IDs (13, 15). Each salinity core has its manually measured ice thickness (5), ice draft (6), core length (7), and mean snow height (22). Each core section has the total length of its top (8) and bottom (9) measured in situ, as well estimated depth of section top (10), bottom (11), and middle (12). The depth estimates assume that the total length of all core sections is equal to the measured ice thickness. Each core section has the value of its practical salinity (14), isotopic values (16, 17, 18) (Meyer et al., 2000), as well as sea ice temperature (19) and ice density (20) interpolated to the depth of salinity measurements. The global coordinates of coring sites were measured directly. When it was not possible, coordinates of the nearby temperature buoy 2019T66 were used. Ice mass balance buoy 2019T66 installation is described in doi:10.1594/PANGAEA.938134. Brine volume (21) fraction estimates are presented only for fraction values from 0 to 30%. Each core section also has comments (23) describing if the sample is from a false bottom, from rafted ice or has any other special characteristics. Macronutrients from the salinity core, and more isotope data will be published in a subsequent version of this data set.
    Keywords: Arctic; Arctic Ocean; Arctic Research Icebreaker Consortium: A strategy for meeting the needs for marine-based research in the Arctic; ARICE; Calculated; Comment; Core length; cores; DATE/TIME; density; Density, ice; Depth, adjusted; Depth, adjusted bottom; Depth, adjusted top; Depth, ice/snow, bottom/maximum; Depth, ice/snow, top/minimum; Deuterium excess; Ecological monitoring; Event label; HAVOC; Hydrostatic weighing; IC; Ice corer; ICEGAUGE; Ice thickness gauge; Isotopic liquid water analyzer; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ECO; MOSAiC_ICE; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Physical properties; Polarstern; PS122/1; PS122/1_10-19; PS122/1_5-3; PS122/1_6-34; PS122/1_7-6; PS122/1_7-97; PS122/1_8-2; PS122/1_9-6; PS122/1_9-93; PS122/2; PS122/2_17-3; PS122/2_19-7; PS122/2_21-13; PS122/2_23-3; PS122/2_24-8; PS122/3; PS122/3_32-63; PS122/3_35-11; PS122/3_36-21; PS122/3_38-24; PS122/3_39-7; PS122/4; PS122/4_44-134; PS122/4_46-18; PS122/4_47-16; PS122/4_48-23; PS122/4_49-34; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Salinity; Salinometer, inductive; Sample ID; Sea ice; Sea ice draft; Sea ice salinity; Sea ice thickness; Snow height; Tape measure; Temperature; Temperature, ice/snow; Thermometer; time-series; Volume, brine; δ18O, water; δ Deuterium, water
    Type: Dataset
    Format: text/tab-separated-values, 7847 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: Ecological research in recent decades revealed that species loss has a predominantly negative effect on ecosystem functioning and stability. Most of these studies were based on random species loss scenarios, but extinctions in nature are not random. Recent experimental studies using macroscopic communities largely advanced knowledge about the effects of non-random species loss. However, in microscopic communities like the phytoplankton, implementing realistic species loss scenarios is challenging and experimental data are scarce. Creating more realistic experiments to study the role of phytoplankton diversity for ecosystem functioning is particularly important, as they provide up to 50% of global primary productivity, form the basis of all pelagic food webs, and are important for biogeochemical cycling. In this study, we experimentally tested and evaluated three methods for non-random species loss in a natural marine phytoplankton community. Dilution, filtration, and heat stress removed the targeted rare, large, and sensitive species, respectively. All these species groups are extremely vulnerable to extinction in future climate scenarios and play important roles in the communities. Dilution and filtration with a fine mesh additionally decreased initial biomass, which increased the variability of species left in the respective replicates. The methods tested in this study can be used to non-randomly manipulate phytoplankton species diversity in communities used for experiments. However, in studies where species identities are more important than species richness, the dilution and filtration methods should be modified to eliminate the effect of decreasing initial biomass.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-13
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-25
    Description: Climate change has the potential to profoundly influence the community structure and function of marine ecosystems. Prior to testing the consequences of altered environmental conditions on ecosystem functioning, it is first necessary to better understand how the functioning of an ecosystem is affected by its structure. Using phytoplankton communities with 4 naturally co‑occurring coccolithophores including species of Emiliania, Gephyrocapsa, and Calcidiscus collected off the Azores, we experimentally tested whether varying initial dominance leads to different competitive outcomes and consequently affects community functioning, such as biomass and carbon accumulation. We manipulated initial community structure by creating 5 different dominance scenarios: (1) all species contributing evenly to total initial biomass, and (2–5) one of each species contributing 4× that of the remaining 3 species to total initial biomass. All 4 species were simultaneously grown in monocultures starting with the same total initial biomass as the communities. Monocultures differed significantly in total final biomass, particulate inorganic carbon, and particulate organic carbon content. Priority effects in the communities caused the initially dominant species to remain dominant during the stationary phase in 3 out of 4 cases. However, despite varying dominant species and different outcomes in the monocultures, community functioning was unaffected. We suggest that selective and facilitative effects are responsible for the equalization of community functioning. We conclude that monoculture experiments are not sufficient to predict whole-community responses, since species interactions can significantly alter the expected functional outcome.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-05-17
    Description: Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω2) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. Our study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Talk] In: World Conference of Marine Biodiversiity, 26.-30.09.2011, Aberdeen, UK .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...