GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Schlagwort(e): Impact craters -- Barents Sea. ; Submarine geology. ; Cratering. ; Impact. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book describes the Mjølnir impact event in the context of the geological and geophysical history of the Barents Sea region, and goes on to present elaborative numerical models of its formation and associated tsunami generation.
    Materialart: Online-Ressource
    Seiten: 1 online resource (324 pages)
    Ausgabe: 1st ed.
    ISBN: 9783540882602
    Serie: Impact Studies
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- 1 Introduction -- 1.1 Background -- 1.2 Barents Sea Geology -- 1.3 Mjlnir Impact at Volgian/Ryazanian Boundary -- 1.4 The Investigation History of Mjlnir -- 1.5 The Search for Oil and Gas in the Barents Sea -- 1.6 Future Mjlnir Studies -- 1.7 Etymology -- 2 Geological Framework -- 2.1 Plate Tectonic Evolution of the Arctic -- 2.2 Mesozoic Stratigraphy and Depositional Environments of the Arctic -- 2.2.1 Geological and Palaeogeographical Setting -- 2.2.1.1 Cretaceous Palaeogeographic Setting -- 2.2.1.2 The Barents Sea in Time and Space -- 2.2.2 Svalbard -- 2.2.3 Barents Sea -- 2.2.4 Greenland -- 2.2.5 Siberia -- 2.2.6 Late Jurassic and Early Cretaceous Depositional Configuration -- 3 Impact Structure and Morphology -- 3.1 Seismic Reflection Database -- 3.2 Shallow Structure -- 3.2.1 Main Features -- 3.2.2 Detailed Seismic Correlation to Nearby Shallow Boreholes -- 3.2.2.1 Borehole 7430/10-U-01 -- 3.2.2.2 Borehole 7329/03-U-01 -- 3.2.2.3 Impact Timing as Revealed from Seismic Correlation -- 3.2.3 Impact-Induced Deformation -- 3.2.4 Near-Field Erosional Features -- 3.2.4.1 Resurge Gullies -- 3.2.4.2 Crater Rim -- 3.3 Deep Structure -- 3.3.1 Impact-Induced Disturbance -- 3.3.1.1 Seismic Reflectivity Patterns -- 3.3.1.2 Shape and Dimensions -- 4 Impact Geophysics and Modelling -- 4.1 Features Related to the Cratering Process -- 4.1.1 Excavated Crater and Breccia -- 4.1.2 Impact Melts -- 4.1.3 Gravitational Collapse -- 4.1.4 Structural Uplift -- 4.2 Impact into a Marine Sedimentary Basin -- 4.3 Impact Crater Modelling -- 4.3.1 Potential Field Data -- 4.3.2 Marine Gravity Anomalies and Modelling -- 4.3.3 Marine Magnetic Anomalies and Modelling -- 4.3.4 Traveltime/Velocity Anomalies and Modelling -- 4.4 Modelled Porosity Anomalies -- 4.4.1 Density-Derived Porosity Anomaly. , 4.4.2 Velocity-Derived Porosity Anomaly -- 4.4.3 Postimpact Deformation-Derived Porosity Anomaly -- 4.4.4 Porosity Anomaly and Pore Space Volume -- 4.4.5 Porosity Anomaly and Hydrocarbon Potential -- 4.5 Potential Non-impact Origin -- 4.5.1 Clay Diapir -- 4.5.2 Salt Diapir -- 4.5.3 Igneous Feature -- 4.6 Alternative Interpretation of Mjlnir Crater Dimensions Based on Regional Gravity and Aero-magnetic Profiles and Modelling -- 4.6.1 The Mjølnir Aero-magnetic Anomaly -- 4.6.2 The Mjølnir Regional Free-Air Gravity Anomaly -- 4.6.3 Alternative Interpretation of Mjølnir Crater Dimensions -- 4.7 Impact-Induced Changes in Physical Properties -- 4.8 Mjlnir as an Oblique Impact Event -- 4.8.1 Elongated Crater Diameter -- 4.8.2 Seismic Disturbance Asymmetry -- 4.8.3 Peak-Ring Character -- 4.8.4 Offsets in Brecciation and Structural Uplift -- 4.8.5 Impact Direction and Angle -- 4.8.6 Mjølnir Impact Obliquity Constrains Models for Near-Field Perturbations -- 4.8.6.1 Nature and Distribution of Proximal Ejecta -- 4.8.6.2 Tsunami-Wave Distribution -- 5 Impact Cratering and Post-impact Sedimentation -- 5.1 Introduction -- 5.2 The Mjlnir Crater Core (7329/03-U-01) -- 5.2.1 The Ragnarok Formation -- 5.2.2 Ragnarok Formation, Unit I -- 5.2.3 Ragnarok Formation, Unit II -- 5.2.4 Hekkingen Formation -- 5.2.5 Klippfisk Formation -- 5.2.6 Spectral Gamma Results -- 5.2.7 Paleontology of the Ragnarok Formation -- 5.2.8 Paleontology of the Hekkingen Formation -- 5.2.9 Magnetic Properties and Densities of the Mjølnir Crater Core (7329/03-U-01) -- 5.3 The Mjlnir Impact Event in a Sequence Stratigraphical Framework -- 5.4 The Evidence for Impact Crater Formation -- 5.4.1 The Crater: Its Structure and Shape -- 5.4.2 Fracturing and Conglomerates -- 5.4.3 Mineralogical Evidence of Impact Cratering -- 5.4.4 Geochemistry -- 5.4.5 Paleontological Evidence of Impact Cratering. , 6 Ejecta Geology -- 6.1 The Identification of Ejecta Beds -- 6.1.1 Introduction -- 6.1.2 The Ragnarok Formation and Sindre Bed -- 6.1.3 The Discoveries of Large Amounts of Soot in Mjølnir Related Sediments -- 6.2 The Stratigraphical Distribution of the Ejecta Beds -- 6.2.1 Borehole 7430/10-U-01 -- 6.2.2 Borehole 7018/05-U-01 -- 6.2.3 Janusfjellet, Central Spitsbergen -- 6.2.4 Nordvik Peninsula, North-Western Siberia -- 6.2.5 The Mjølnir Ejecta as a Regional Stratigraphic Marker -- 7 The Impact Dynamics -- 7.1 Introduction -- 7.2 Numerical Model -- 7.3 Cratering Process -- 7.4 Ejecta Formation and Distribution -- 7.5 Resurge Flow and Tsunami Generation -- 7.6 Conclusions -- 8 Structural Analysis of Deformed Central Peak Sediments -- 8.1 Structural Position of the Mjlnir Impact Crater -- 8.2 Structural Geological Analysis -- 8.2.1 Type A Structures: Early Extensional Micro-faults and Fissures -- 8.2.2 Type B-Structures: Fragmentation of Semi-consolidated or Consolidated Beds -- 8.2.3 Type C-Structures: Liquefaction and Shearing -- 8.2.4 Type D-Structures: Folds, Rotated Strata and Shear Bands -- 8.2.5 Type E-Structures: Intensely Sheared Sequences -- 8.2.6 Type F-Structures: Late Brittle Fractures and Microfaults -- 8.3 Deformation History of the Ragnarok Formation -- 9 Postimpact Deformation Due to Sediment Loading: The Mjlnir Paradigm -- 9.1 Postimpact Burial -- 9.2 Mjlnir Crater -- 9.2.1 Postimpact Infilling -- 9.2.2 Faulting and Differential Vertical Movements -- 9.3 Other Craters: Chesapeake Bay, Chicxulub, Bosumtwi, and Montagnais -- 9.4 Original Crater Relief Reconstruction -- 9.4.1 Mjølnir -- 9.4.2 Chicxulub -- 9.4.3 Bosumtwi -- 9.4.4 Chesapeake Bay -- 9.5 Correction of Crater Morphological and Structural Parameters -- 9.5.1 Parameters Prone to Postimpact Burial Modification -- 9.5.2 Postimpact Modification Correction Factor. , 10 The Mjlnir Tsunami -- 10.1 Introduction -- 10.2 Tsunami Models -- 10.3 Tsunami Generation -- 10.3.1 Near Field Evolution -- 10.3.2 Far Field Propagation -- 10.3.2.1 Estimates of Far-Field Behaviour -- 10.3.2.2 Computations of Far-Field Behaviour -- 10.4 Discussion -- References -- Index -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Schlagwort(e): Submarine geology--Congresses. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (349 pages)
    Ausgabe: 1st ed.
    ISBN: 9783662064238
    Serie: Impact Studies
    DDC: 551.3/97
    Sprache: Englisch
    Anmerkung: Impact Studies -- Cratering in Marine Environments and on Ice -- Copyright -- Preface -- Acknowledgements -- Contents -- List of Contributors -- Impacts into Marine and Icy Environments - A Short Review -- Biotic Responses to the Mjølnir Meteorite Impact, Barents Sea: Evidence from a Core Drilled within the Crater -- Near-field Erosional Features at the Mjølnir Impact Crater: the Role of Marine Sedimentary Target -- Global Effects of the Chicxulub Impact on Terrestrial Vegetation - Review of the Palynological Record from New Zealand Cretaceous/Tertiary Boundary -- The Neugrund Marine Impact Structure (Gulf of Finland, Estonia) -- Structure-filling Sediments of the Wetumpka Marine-target Impact Structure (Alabama, USA) -- Krk-breccia, Possible Impact-Crater Fill, Island of Krk in Eastern Adriatic Sea (Croatia) -- Did the Puchezh-Katunki Impact Trigger an Extinction? -- Geochemistry of a Langhian Pelagic Marly Limestone Sequence of the Cònero Riviera, Ancona (Italy) and the Search for a Ries Impact Signature: A Progress Report -- Titan: A New World Covered in Submarine Craters? -- Estimating Crater Size for Hypervelocity Impacts on Small Icy Bodies (e.g. Comet Nucleus) -- Survivability of Bacteria in Hypervelocity Impacts on Ice -- Impact Cratering of Icy and Rocky Targets in Planetary Sciences and in the Laboratory -- Paleomagnetism and 40Ar/39Ar Age Determinations of Impactites from the Ilyinets Structure, Ukraine -- Cathodoluminescence, Electron Microscopy, and Raman Spectroscopy of Experimentally Shock Metamorphosed Zircon Crystals and Naturally Shocked Zircon from the Ries Impact Crater -- A Brief Introduction to Hydrocode Modeling of Impact Cratering.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1751-8369
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geographie , Geologie und Paläontologie
    Notizen: The Billefjorden Fault Zone represents a major lineament on Spitsbergen with a history of tectonic activity going back into the Devonian and possibly earlier. Recent structural, sedimcntological and stratigraphical investigations indicate that most of the stratigraphic thickness variations within the Mesozoic strata along the Billefjorden Fault Zone south of Isfjordcn are due to Tertiary compressional tectonics related to the transpressive Eocene West-Spitsbergen Orogeny. No convincing evidence of distinct Mesozoic extensional events, as suggested by previous workers, has been recognized. Tertiary compressional tectonics are characterized by a combined thin-skinned/thick-skinned structural style. Decollement zones arc recognized in the Triassic Sassendalen Group (tower Décollement Zone) and in the Jurassic/Cretaceous Janusfjellet Subgroup (Upper Décollement Zone). East-vergent folding and reverse faulting associated with these decollement' zones have resulted in the development of compressional structures, of which the major arc the Skolten and Tronfjellct Anticlines and the Advcntelva Duplex. Movements on one or more high angle east-dipping reverse faults in the pre-Mesozoic basement have resulted in the development of the Juvdalskampcn Monocline, and are responsible for out-of-sequence thrusting and thinning of the Mesozoic sequence across the Billefjorden Fault Zone. Preliminary shortening calculations indicate an eastward displacement of minimum 3-4 km, possibly as much as 10 km for the Lower Cretaceous and younger rocks across the Billefjorden Fault Zone.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 42 (1995), S. 0 
    ISSN: 1365-3091
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    [s.l.] : Nature Publishing Group
    Nature 278 (1979), S. 339-341 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] The REEs from La to Lu (Z = 57-71), have been the basis of many geochemical studies. Most of these have considered hardrock problems, but several studies have also been carried out on sediments and sedimentary rocks. Sedimentary deposits often seem to have REE distributions reflecting the different ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 21 (2002), S. 0 
    ISSN: 1751-8369
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geographie , Geologie und Paläontologie
    Notizen: We present sedimentological comparisons and stratigraphical correlations of the Jurassic and Cretaceous epicontinental shelf deposits of Svalbard and updated descriptions of the shallow-marine North Greenland sediments of East Peary Land and Kronprins Christians Land (Kilen). The Callovian to Volgian Agardhfjellet Formation of Svalbard is correlated to the lower part of the Ladegårdsåen Formation on East Peary Land, and to the Birkelund Fjeld, Splitbæk, and Kuglelejet formations of Kronprins Christian Land (Kilen). The Berriasian to Hauterivian Rurikfjellet Formation (Svalbard) correlates with the Dromledome and Lichen Ryg formations from Kilen and the middle part of the Ladegårdsåen Formation from East Peary Land. The Galadriel Fjeld Formation from Kilen and the upper part of the Ladegårdsåen Formation (East Peary Land) are comparable to the Helvetiafjellet and Carolinefjellet formations of Svalbard. These comparisons between Svalbard and North Greenland are combined with stratigraphical information from neighbouring regions in palaeogeographical reconstructions. Five selected time slices are presented within a setting of the most recent plate tectonic reconstructions for the area.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 3 (1985), S. 0 
    ISSN: 1751-8369
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geographie , Geologie und Paläontologie
    Notizen: An 18.5 m thick shale sequence of Norian-Rhaetian age is described from the Bohemanfiya-Syltoppen area (north of Isfjorden, central Spitsbergen). Lithological, petrographical and palynological analyses show that the sequence represents a marginal development of the lower part of the Wilhelmeya Formation. The depositional history at the Triassic-Jurassic transition is discussed in the light of this new evidence. The Wilhelmøya Formation was probably deposited during a weak marine transgression over an area of low relief. Low sediment supply and current and wave reworking of the sediments characterized the depositional conditions.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 11 (1992), S. 0 
    ISSN: 1751-8369
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geographie , Geologie und Paläontologie
    Notizen: The Ryazanian Myklegardfjellet Bed, composed of yellow to greenish plastic clays, is a regional marker horizon in central and eastern Spitsbergen, where it occurs just above the boundary between the Agardhfjellet and Rurikfjellet formations. Through a combined mineralogical, sedimentological and micropaleontological approach, it is demonstrated that the bed was deposited by marine shelf processes and subsequently altered by decomposition of the unstable glauconite bearing components. These sediments were deposited at the culmination of a shallowing episode in the depositional area. This event marks a shift in depositional mode, from predominantly shelf sedimentation controlled by global eustatic sea level changes (Late Bathonian-Ryazanian), to a locally regulated, deep sea to shallow shelf-prodeltaic to deltaic pattern of deposition (Ryazanian-Hauterivian).
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Dypvik, Henning; Nagy, Jenö (1978): Early Tertiary Bentonites from Svalbard; a preliminary report. Polarforschung, 48(1/2), 139-150, hdl:10013/epic.29460.d001
    Publikationsdatum: 2023-05-12
    Beschreibung: Paleontological and petrological studies of clay beds in the Basilika Formation (Tertiary age) are the subject of this paper. The petrology of the beds indicates that their main constituents were derived from volcanic activity and represent bentonites. Differing composition of the beds may suggest several spatially separated eruptions. The volcanic source area probably lay towards the north of the present Tertiary outcrops of Svalbard. Two foraminiferal assemblages are found in the bentonites: the lower is dominated by arenaceous forms while the upper consists of calcareous species.
    Schlagwort(e): Basilika; Chlorite, relative abundance; Event label; Feldspar (3.22 Å), relative abundance; Firkanten; Grain size, maximum; Illite/Smectite ratio; PROFILE; Profile sampling; Quartz (4.26 Å), relative abundance; Sample code/label; Svalbard; X-ray diffraction (XRD)
    Materialart: Dataset
    Format: text/tab-separated-values, 89 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...