GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2017-03-10
    Description: We conducted four field campaigns to evaluate benthic O2 consumption and the effect of advective pore-water flow in nearshore permeable sediments in the North Sea and Baltic Sea. Advective pore-water transport had a marked effect on the benthic exchange of O2 and TCO2 in benthic chamber incubations, with the rates of exchange increasing by a factor of up to 2.5 when imposing flushing rates of 100-300 L m−2 d−1, compared to settings with diffusive exchange only. Estimates of in situ exchange rates using oxygen penetration and volumetric O2 consumption and TCO2 production rates were within the range measured in the chambers. The contribution of advection to solute exchange was highly variable and dependent on sediment topography. Advective processes also had a pronounced influence on the in situ distribution of O2 within the sediment, with characteristic two-dimensional patterns of O2 distribution across ripples, and also deep subsurface O2 pools, being observed. Mineralization pathways were predominantly aerobic when benthic mineralization rates were low and advective pore-water flow high as a result of well-developed sediment topography. By contrast, mineralization proceeded predominantly through sulfate reduction when benthic mineralization rates were high and advective pore-water flow low as a result of poorly developed topography. Previous studies of benthic mineralization in shallow sandy sediments have generally ignored these dynamics and, hence, have overlooked crucial aspects of permeable sediment function in coastal ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-01
    Description: Diazotrophic cyanobacteria are capable of fixing atmospheric N2 to satisfy their physiological nitrogen requirements. This process can result in the transfer of substantial amounts of ?new? diazotrophic nitrogen (ND) to aquatic ecosystems during blooms of these taxa. Using in situ measurements of plankton natural abundance stable isotope composition and a combination of underway and fixed site survey data, the total ND flux into the Gippsland Lakes estuary (Australia) was estimated during a summer bloom of the diazotrophic cyanobacterium Nodularia spumigena. Over the course of the bloom, ND increased in the upper water column of the estuary from 33% ± 17% (mean ± SD) to 73% ± 13% of the standing pool of total particulate N. A conservative estimate of total ND flux (146 Mg) equates to an estimated 177% of the summer total N load and 22% of the annual total N load to the estuary. Combining natural abundance stable isotope measurements with relatively simple fixed and underway survey designs can provide a cost-effective approach for monitoring the ND flux into estuary or lacustrine environments. This approach relies on an isotopic differential between the diazotrophic and the non-diazotrophic components of the plankton community; it may not be appropriate in ecosystems that experience low-level blooms or blooms of intermittent N-fixing cyanobacteria. Large-scale blooms of diazotrophic cyanobacteria are considered uncommon in estuaries, yet it is clear that these blooms can represent major sources of new N to estuarine ecosystems when and where they occur. # doi:10.1890/13-0947.1
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...