GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    ISSN: 1432-1157
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract The hypothesis that variations of the Amazon plume are forced primarily by wind is further explored through a series of simplified numerical model simulations. The wind's role in the change in plume structure and the nature of this change are investigated for two events: a shift in wind direction from westward to southeastward and a reduction in magnitude of the westward wind speed. Under winds with a southeastward component, the plume is confined to below 5°N; this simulation represents a rare but illustrative event showing how the balance of forces is quickly adjusted under changing winds. The freshest portions of the plume expand eastward, but are confined near the river mouth, as observed. The cross-shelf and alongshelf dynamic balances are similar in magnitude to those with westward wind stress, but the balance between the equatorial jet and buoyancy-driven cross-shelf flow is altered, controlling a new along-shelf position of the front. During wind-relaxation events, the plume widens near the mouth as a result of strong, eastward cross-shelf velocities associated with an equatorial Kelvin wave.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Journal of oceanography 46 (1990), S. 273-295 
    ISSN: 1573-868X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract A three-dimensional, primitive-equation model is developed to study how the Kuroshio, the monsoon, the Yangtze River outflow and the buoyancy forcing from the South China Sea affect the circulation of the East China Sea. It is found that the Kuroshio water usually intrudes into the East China Sea from both sides of Taiwan Island. Winter winds enhance the Kuroshio intrusion from northeast of Taiwan, but weaken it from the Taiwan Strait. Summer winds act in the opposite way. The increased presence of the Kuroshio water in the East China Sea in winter can be largely attributed to the shoreward surface Ekman drift associated with the northerly wind. In summer, theΩ-shaped plume emanating from the Taiwan Strait is, to a large extent, produced by the buoyancy forcing from the South China Sea. In summer, the bimodal distribution of the Yangtze River outflow is initially produced by the upwelling-favorable wind. Away from the Yangtze River, the far-field dispersal of the fresher water depends on the strength of the Kuroshio. A stronger Kuroshio enhances the seaward dispersal of the northern branch of the Yangtze outflow north of Taiwan, but reduces the southward penetration of the southern branch. In winter, downwelling-favorable winds confine the Yangtze River outflow to a narrow band forming nearshore coastal jet penetrating southward. The northern tip of Taiwan acts as a conduit, channeling the seaward dispersal of the fresher water. The model results interpret the observed circulation patterns.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Journal of oceanography 51 (1995), S. 111-132 
    ISSN: 1573-868X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract Winter appearance of a northeastward warm current off the southern coast of China against gale force winds is well documented but lacks a plausible explanation. Relaxation of northeasterly winds is envisaged here as a possible cause of the South China Sea Warm Current in winter. A three-dimensional circulation model for the South China Sea is first driven to equilibrium by climatological forcings. Thereafter, wind forcing is relaxed from the 15th day of each month for 9 days. In winterlike months from December to April, the wind relaxation invariably triggers a northeastward current of which the location and alongshore span are comparable to that of the observed warm current. This current is driven by the pressure gradient along the northwestern boundary of the South China Sea, sea level being high to the southwest and low to the northeast. The sea level gradient is built up by the monsoon-driven southwestward coastal current along the northwestern boundary and, after wind relaxes, triggers a return current and a sea level drop that expand southwestward from the southern coast of China to the east coast of Vietnam. The current is initially barotropic, becoming increasingly baroclinic in time as warm waters from the south are advected northeastward. The model also suggests that the sea level gradient is present in most of the months of the year, but is not as dramatic as in winter to trigger fundamental changes in the circulation of the South China Sea.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Journal of oceanography 55 (1999), S. 65-78 
    ISSN: 1573-868X
    Schlagwort(e): Fission ; vortices ; heton ; Arctic
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract Close interactions among vertically stacked pairs of counter-rotating eddies under sea ice were investigated in numerical experiments. The numerical model contains a stratified ocean capped by an ice layer. Under the ice layer, a shallow brine source produces a top cyclone and a submerged anticyclone, while a shallow freshening source generates a top anticyclone and a submerged cyclone. Ice-exerted friction would dissipate the top eddy, leaving the submerged one in lone existence. In this work the winning vorticity is sought from group settings. Arrays of equally spaced salinity sources and sinks, alternate in sign but equal in strength, are employed to produce rows of vertically stacked eddy pairs. Fission occurs when adjacent vortex centers are separated by less than one Rossby radius. This process ejects parcels of density anomalies to the ambient ocean in upper depths. Low salinity anomalies are quickly dispersed into a thin surface layer and are unable to regenerate submerged eddies. High salinity parcels, being difficult to disperse, often maintain or regenerate submerged anticyclones below. Fission is particularly effective if a single row of salinity forcing is used. With multiple rows, fission is active only in the outer rows. The strong interaction among closely packed eddies operates in time scales of tens of days, helping explain the predominance of submerged anticyclones under Arctic sea ice.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 521 (2015): 65-69, doi:10.1038/nature14399.
    Beschreibung: Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they impact a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for manmade structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, posing severe challenges for their observation and their inclusion in numerical climate models, which are sensitive to their effects6-7. Over a decade of studies8-11 have targeted the South China Sea, where the oceans’ most powerful internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their generation mechanism, variability and energy budget, however, due to the lack of in-situ data from the Luzon Strait, where extreme flow conditions make measurements challenging. Here we employ new observations and numerical models to (i) show that the waves begin as sinusoidal disturbances rather than from sharp hydraulic phenomena, (ii) reveal the existence of 〉200-m-high breaking internal waves in the generation region that give rise to turbulence levels 〉10,000 times that in the open ocean, (iii) determine that the Kuroshio western boundary current significantly refracts the internal wave field emanating from the Luzon Strait, and (iv) demonstrate a factor-of-two agreement between modelled and observed energy fluxes that enables the first observationally-supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.
    Beschreibung: Our work was supported by the U.S. Office of Naval Research and the Taiwan National Science Council.
    Beschreibung: 2015-10-29
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...