GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2015-08-03
    Beschreibung: The effects of climate change on Arctic marine ecosystems and their biogeochemical cycles are difficult to predict given the complex physical, biological and chemical interactions among the ecosystem components. We studied benthic biogeochemical fluxes in the Arctic and the influence of short-term (seasonal to annual), long-term (annual to decadal) and other environmental variability on their spatial distribution to provide a baseline for estimates of the impact of future changes. In summer 2009, we measured fluxes of dissolved oxygen, nitrate, nitrite, ammonia, soluble reactive phosphate and silicic acid at the sediment–water interface at eight sites in the southeastern Beaufort Sea at water depths from 45 to 580 m. The spatial pattern of the measured benthic boundary fluxes was heterogeneous. Multivariate analysis of flux data showed that no single or reduced combination of fluxes could explain the majority of spatial variation, indicating that oxygen flux is not representative of other nutrient sink–source dynamics. We tested the influence of eight environmental parameters on single benthic fluxes. Short-term environmental parameters (sinking flux of particulate organic carbon above the bottom, sediment surface Chl a) were most important for explaining oxygen, ammonium and nitrate fluxes. Long-term parameters (porosity, surface manganese and iron concentration, bottom water oxygen concentrations) together with δ13Corg signature explained most of the spatial variation in phosphate, nitrate and nitrite fluxes. Variation in pigments at the sediment surface was most important to explain variation in fluxes of silicic acid. In a model including all fluxes synchronously, the overall spatial distribution could be best explained (57%) by the combination of sediment Chl a, phaeopigments, δ13Corg, surficial manganese and bottom water oxygen concentration. We conclude that it is necessary to consider long-term environmental variability along with rapidly ongoing environmental changes to predict the flux of oxygen and nutrients across Arctic sediments even at short timescales. Our results contribute to improve ecological models predicting the impact of climate change on the functioning of marine ecosystems.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-03-06
    Beschreibung: Sediment and water can potentially be altered, chemically, physically and biologically as they are sampled at the seafloor, brought to the surface, processed and analysed. As a result, in situ observations of relatively undisturbed systems have become the goal of a growing body of scientists. Our understanding of sediment biogeochemistry and exchange fluxes was revolutionized by the introduction of benthic chambers and in situ micro-electrode profilers that allow for the direct measurement of chemical fluxes between sediment and water at the sea floor and for porewater composition. Since then, rapid progress in the technology of in situ sensors and benthic chambers (such as the introduction of gel probes, voltammetric electrodes or one- and two-dimensional optodes) have yielded major breakthroughs in the scientific understanding of benthic biogeochemistry. This paper is a synthesis of discussions held during the workshop on sediment biogeochemistry at the “Benthic Dynamics: in situ surveillance of the sediment–water interface” international conference (Aberdeen, UK—March 25–29, 2002). We present a review of existing in situ technologies for the study of benthic biogeochemistry dynamics and related scientific applications. Limitations and possible improvement (e.g., technology coupling) of these technologies and future development of new sensors are discussed. There are countless important scientific and technical issues that lend themselves to investigation using in situ benthic biogeochemical assessment. While the increasing availability of these tools will lead research in yet unanticipated directions, a few emerging issues include greater insight into the controls on organic matter (OM) mineralization, better models for the understanding of benthic fluxes to reconcile microelectrode and larger-scale chamber measurements, insight into the impacts of redox changes on trace metal behavior, new insights into geochemical reaction pathways in surface sediments, and a better understanding of contaminant fate in nearshore sediments.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-10-04
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...