GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Schlagwörter
Sprache
Erscheinungszeitraum
  • 11
    facet.materialart.
    Unbekannt
    Nature Publishing Group
    In:  Nature Climate Change, 3 (12). pp. 1044-1049.
    Publikationsdatum: 2019-09-23
    Beschreibung: Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes1, 2. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations3. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we reveal alkaline (~pH 9.5) conditions in the stomach of sea urchin larvae. Larvae exposed to decreased seawater pH suffer from a drop in gastric pH, which directly translates into decreased digestive efficiencies and triggers compensatory feeding. These results suggest that larval digestion represents a critical process in the context of ocean acidification, which has been overlooked so far.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2018-05-28
    Beschreibung: Salinity strongly influences development and distribution of the sea star Asterias rubens. In Kiel Fjord, located in the western Baltic Sea, A. rubens is the only echinoderm species and one of the main benthic predators controlling blue mussel (Mytilus edulis) abundance. However, Kiel Fjord with an average salinity of about 15 is located close to the eastern distribution boundary of A. rubens in the Baltic Sea. In this study, we combined field and laboratory investigations to test whether the salinity of Kiel Fjord is high enough to enable successful development of A. rubens. Sea star eggs were fertilized in vitro, and development was monitored in the laboratory at four salinities (9, 12, 15 and 18) for 10 weeks. At a salinity of 9, development ceased prior to the blastula stage. At a salinity of 12, no larvae reached metamorphosis. At higher salinities, larvae developed normally and metamorphosed into juvenile sea stars. Abundances of A. rubens larvae and settled juveniles were also observed in Kiel Fjord and correlated to salinity values measured from March until June during 6 years (2005–2010). Results revealed high A. rubens settlement rates only in 2009, the year when salinity was the highest and least variable during the period of spawning and larval development. It appears that only years with high and stable salinities permit recruitment of A. rubens in Kiel Fjord. Projected desalination of the Baltic Sea could shift the distribution of A. rubens in the western Baltic Sea north-westwards and may lead to local extinction of a keystone species of the benthic ecosystem.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2019-09-23
    Beschreibung: Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg-1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 μatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 μatm were observed at the surface and 〉3000 μatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 μatm) in comparison to a low pCO2 outer fjord station (ca. 600 μatm). In addition, mussels were able to outcompete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2018-01-22
    Beschreibung: Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310–350 cells mL−1 vs. 1600–2000 cells mL−1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    In:  [Poster] In: EPOCA, BIOACID, UKOARP Annual Meeting, 27.09.-30.09.2010, Bremerhaven . Abstracts : Joint EPOCA, BIOACID and UKOARP Meeting ; Atlantic Hotel, Bremerhaven, Germany, September 27th - 30th, 2010 ; p. 117 .
    Publikationsdatum: 2012-07-06
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    facet.materialart.
    Unbekannt
    In:  [Poster] In: Future Ocean: Cluster Retreat 2015, 14.-15.10.2015, Neumünster, Germany .
    Publikationsdatum: 2016-01-19
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    facet.materialart.
    Unbekannt
    In:  [Poster] In: Future Ocean: Cluster Retreat 2015, 14.-15.10.2015, Neumünster, Germany .
    Publikationsdatum: 2016-01-19
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    facet.materialart.
    Unbekannt
    In:  [Poster] In: 6. ECC 2015 – Looking Ahead: Oceans, Earth and Human Impact, 05.-06.10.2015, Kiel, Germany .
    Publikationsdatum: 2018-12-03
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2023-02-08
    Beschreibung: Maintenance of homeostasis is one of the most important physiological responses for animals upon osmotic perturbations. Ionocytes of branchial epithelia are the major cell types responsible for active ion transport, which is mediated by energy-consuming ion pumps (e.g., Na+-K+-ATPase, NKA) and secondary active transporters. Consequently, in addition to osmolyte adjustments, sufficient and immediate energy replenishment is essenttableial for acclimation to osmotic changes. In this study, we propose that glutamate/glutamine catabolism and trans-epithelial transport of nitrogenous waste may aid euryhaline teleosts Japanese medaka (Oryzias latipes) during acclimation to osmotic changes. Glutamate family amino acid contents in gills were increased by hyperosmotic challenge along an acclimation period of 72 hours. This change in amino acids was accompanied by a stimulation of putative glutamate/glutamine transporters (Eaats, Sat) and synthesis enzymes (Gls, Glul) that participate in regulating glutamate/glutamine cycling in branchial epithelia during acclimation to hyperosmotic conditions. In situ hybridization of glutaminase and glutamine synthetase in combination with immunocytochemistry demonstrate a partial colocalization of olgls1a and olgls2 but not olglul with Na+/K+-ATPase-rich ionocytes. Also for the glutamate and glutamine transporters colocalization with ionocytes was found for oleaat1, oleaat3, and olslc38a4, but not oleaat2. Morpholino knock-down of Sat decreased Na+ flux from the larval epithelium, demonstrating the importance of glutamate/glutamine transport in osmotic regulation. In addition to its role as an energy substrate, glutamate deamination produces NH4+, which may contribute to osmolyte production; genes encoding components of the urea production cycle, including carbamoyl phosphate synthetase (CPS) and ornithine transcarbamylase (OTC), were upregulated under hyperosmotic challenges. Based on these findings the present work demonstrates that the glutamate/glutamine cycle and subsequent transepithelial transport of nitrogenous waste in branchial epithelia represents an essential component for the maintenance of ionic homeostasis under a hyperosmotic challenge.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2022-11-07
    Beschreibung: Ecosystems all over the world are continuously invaded by new species, which become non-indigenous species (NIS) in the new location. Increasing ship traffic raises the chances for relocations of aquatic species to new regions since shipping is identified as the major transport vector. This dissertation focused on NIS from the North and Baltic Seas and the Great Lakes-St. Lawrence River region. Both regions are connected via frequent transatlantic ship traffic and highly invaded by well documented NIS. Comparing origins of established aquatic NIS in both regions revealed that the systems are highly invaded by species that originate from the Ponto-Caspian region which consists of the Black, Azov and Caspian Seas. Further, observed numbers of established NIS in the two regions were compared to expected numbers of NIS from major donor regions based on the available species pool from donor regions, frequency of shipping transit, and an environmental match between donor and recipient regions. It was discovered that Ponto-Caspian taxa colonized both regions in much higher numbers than expected (Chapter I). A comprehensive study of seven life history traits for each NIS in both regions revealed that certain traits such as dormancy, regeneration and r-strategy are potentially beneficial for invasion success (Chapter II). Global warming as part of a predicted climate change might become a hazard for the survival of some native species, especially in coastal zones which is the habitat of amphipods. Environmental tolerance towards changing temperatures was investigated in three amphipod species and the results revealed that the Ponto-Caspian species Pontogammarus maeoticus has a higher temperature tolerance, especially towards rising temperatures, compared to Gammarus oceanicus, which is native to the Baltic Sea (Chapter III). Hence, with predicted global warming Ponto-Caspian species might be able to compete against native species in the Baltic Sea.
    Materialart: Thesis , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...