GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Science Technology Synergy for Research in the Marine Environment: Challenges for the XXI Century. , ed. by Beranzoli, L., Favali, P. and Smirglio, G. Developments in marine technology, 12 . Elsevier, Amsterdam, Netherlands, p. 2000. ISBN 0-7803-8669-8
    Publication Date: 2020-05-27
    Description: The paper presents an overview of recent seafloor long-term single-frame multiparameter platform developed in the framework of the European Commission and Italian projects starting from the GEOSTAR prototype. The main features of the different systems are described as well as the sea missions that led to their validation. The ORION seafloor observatory network recently developed, based on the GEOSTAR-type platforms and engaged in a deep-sea mission at 3300 m w.d. in the Mediterranean Sea, is also described
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-01
    Description: The paper presents an overview of recent seafloor long-term single-frame multiparameter platform developed in the framework of the European Commission and Italian projects starting from the GEOSTAR prototype. The main features of the different systems are described as well as the sea missions that led to their validation. The ORION seafloor observatory network recently developed, based on the GEOSTAR-type platforms and engaged in a deep-sea mission at 3300 m w.d. in the Mediterranean Sea, is also described.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-02
    Description: De Santis et al. (EPSL 2017) detected that for the first time in Swarm satellite data some magnetic field anomalies associated with the 2015 Nepal M7.8 earthquake, with similar S-shapes for the cumulative number of satellite anomalies and earthquakes, providing an empirical proof on the lithospheric origin of the anomalies. Following the same approach, De Santis et al. (Atmosph. 2019) obtained other promising results for 12 earthquakes in the range M6.1-8.3, in the framework of the ESA funded SAFE (SwArm For Earthquake study) Project. Then, almost five years of Swarm magnetic field and electron density data were analysed with a Superposed Epoch and Space approach finding a robust correlation with major worldwide M5.5+ earthquakes (De Santis et al. Sc.Rep. 2019). The work also confirmed the Rikitake (1987) law, initially proposed for ground data: the larger the magnitude of the impending earthquake, the longer the precursory time of anomaly occurrences. An analogous analysis was also applied in the framework of the ASI funded Limadou-Science Project to the Chinese Seismo-Electromagnetic satellite (CSES) electron density providing similar results (De Santis et al. N.Cim. 2021). Marchetti et al. (Rem.Sens. 2022) confirmed the same result over a longer time series , i.e. 8 years, of Swarm satellite data. Furthermore, we demonstrated in several case studies (e.g. Marchetti et al. JAES 2019, Akhoondzadeh et al. Adv.S.R. 2019; De Santis et al. Fr.E.Sc. 2020) that the integration of CSES and Swarm data with other measurements from ground an atmosphere reveals a chain of processes before many mainshocks.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Benthic Boundary Layer (BBL) is considered a quite homogeneous environment where a wide variety of processes (chemical, physical, geological and biological) occur often producing front structures or inducing turbulence phenomena. The typical stratification of these zones can be interrupted by episodic events which effects can diffuse to the ocean interior exploiting by local current and mixing processes. According to hydrodynamic definition, the BBL thickness may vary from few millimetres up to 100 metres depending on the friction intensity with the sea bed and the stability of water column above it. Generally in deep-sea condition, the BBL thickness is defined by the ratio between the friction velocity and the Coriolis parameter according to the Ekman scale. In the latest years several experiments have been carried out in the deep water of Mediterranean Sea, focusing on the survey and study of benthic processes following a multidisciplinary approach. Benthic observatories, such as SN-1 and GEOSTAR, allow to record long time-series of geochemical, seismological, geomagnetic, geodetic and oceanographic data and allow to understand the dynamics and evolution of the processes though comparison and interpolation of different types of signals. From a oceanographic point of view, the technology of these benthic observatories brings the possibility to observe and measure directly the hydrological properties at the seafloor collecting data for long-time series and with high sampling rate. The observatories deployed in Mediterranean Sea, have provided good information about variations and oscillations of hydrological parameters in deep water where the monitoring is almost lacking. In some cases it has been possible to link these deep-sea datasets with upper data collected by ship-handled system during the same period or during different cruises. This allows to have a more complete idea of the linkage between surface, intermediate and bottom sea. Hence the multidisciplinary approach represents a very important aspect for this kind of study, because it allows not only a cross check of functionality among all the instruments but also an important tool to recognise and better understand possible nonphysical- oceanographic phenomena.
    Description: Published
    Description: Vienna, Austria
    Description: open
    Keywords: Benthic Boundary Layer ; Mediterranean Sea ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 2471252 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We assess the first mission of the GEOSTAR (GEophysical and Oceanographic STation for Abyssal Research) deep-sea multidisciplinary observatory for its technical capacity, performance and quality of recorded data. The functioning of the system was verified by analyzing oceanographic, seismological and geomagnetic measurements. Despite the mission’s short duration (21 days), its data demonstrated the observatory’s technological reliability and scientific value. After analyzing the oceanographic data, we found two different regimes of seawater circulation and a sharp and deepening pycnocline, linked to a down-welling phenomenon. The reliability of the magnetic and seismological measurements was evaluated by comparison with those made using on-land sensors. Such comparison of magnetic signals recorded by permanent land geomagnetic stations and GEOSTAR during a “quiet” day and one with a magnetic storm confirmed the correct functioning of the sensor and allowed us to estimate the seafloor observatory’s orientation. The magnitudes of regional seismic events recorded by our GEOSTAR seismometer agreed with those computed from land stations. GEOSTAR has thus proven itself reliable for integrating other deep-sea observation systems, such as modular observatories, arrays, and instrumented submarine cables
    Description: Published
    Description: 361-373
    Description: open
    Keywords: oceanographic data ; magnetic data ; seismological data ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1856236 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The investigation of the Benthic Boundary Layer (BBL) involves the study of a wide spectrum of different, but connected, processes. In order to study the evolution of physical, geochemical, geological and biological phenomena, and to comprehend their possible relationships, a long-term monitoring with the seafloor observatory support is necessary. Unlike mooring approach, the sea bottom observatories represent a more stable platform wherein a wide variety of instrument can be mounted, giving several advantages on power autonomy and higher sampling rate. In addition, the shortest distance to the bottom of observatory instruments, permits to appreciate even phenomena that can happen close to the sea bottom. The stable localisation of all the instruments at the same bottom depth and their accurate unit time reference allow a relatively easier and efficient comparison of different kind of signals recorded in situ, offering a new and interesting possibility to better understand and describe possible benthic processes. Although to collect long-time series often can give some instrumental drifting problems (especially for the electrode sensors or, in shallow environment, due to bigger befouling activity), an efficient instrumental pre and post-calibration, as well as the possibility to collect water samples during the long period of measurements, guarantee to restore the signals recorded during the data processing phases. The versatility of these observatories then offers a good opportunity to investigate, in the same time, different natural fields and with different instrumental approaches. In addition, it permit to discover that the BBL is not at all a stable environment but, as all the interface layers, it is dominated by strong dynamics processes.
    Description: Published
    Description: Vienna, AUSTRIA
    Description: open
    Keywords: Boundary Layer ; geochemical ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 2161515 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Multidisciplinary Benthic Laboratory for Deep Sea, Long-Term Monitoring in the Antarctic
    Description: Published
    Description: 115-118
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: open
    Keywords: ocean bottom ; multiparameter observation ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The Geophysical and Oceanographic Station for Abyssal Research (GEOSTAR), an autonomous seafloor observatory that collects measurements benefiting a number of disciplines during missions up to 1 year long, will begin the second phase of its first mission in 2000. The 6-8 month investigation will take place at a depth of 3400 m in the southern Tyrrhenian basin of the southern Tyrrhenian basin of the central Mediterranean. GEOSTAR was funded by the European Community (EC) for $2.4 million (U.S. dollars) in 1995 as a part of the Marine Science and Technology programme (MAST). The innovative deployment and recovery procedure GEOSTAR uses was derived from the "two-module" concept successfully applied by NASA in the Apollo and space shuttle missions, where one module performs tasks for the other, including deployment, switching on and off, performing checks and recovery. The observatory communication system, which takes advantage of satellite telemetry, and the simultaneous acquisition of a set of various measurements with a unique time reference make GEOSTAR the first fundamental element of a multiparameter ocean network. GEOSTAR's first scientific and technological mission, which took place in the summer of 1998 in the Adriatic Sea, verified the performance and reliability of the system. The mission was a success. providing 440 hours of continuous seismic magnetic and oceanographic data. Thje second phase of the mission, which was funded by the EC for $2 million (US dollars), will carry equipment for chemical, biological and isotopic analyses not used in the first phase, which will broaden the data collection effort.
    Description: Published
    Description: 45, 48-49
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: N/A or not JCR
    Description: reserved
    Keywords: Multidisciplinary Seafloor observatory ; Monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: GEOSTAR (GEophysical and Oceanographic STation for Abyssal Research) is a project funded by in the 4th Framework Programme of the European Commission, with the aim of developing an innovative deep sea benthic observatory capable of carrying out long-term (up to 1 year) scientific observations at abyssal depths. The configuration of the observatory, conceived to be a node of monitoring networks, is made up of two main subsystems: the Bottom Station, which in addition to the acquisition and power systems and all the sensors also hosts the communications systems; and the Mobile Docker, a dedicated tool for surface-assisted deployment and recovery. At present the Bottom Station is equipped with a triaxial broad-band seismometer, two magnetometers (fluxgate and scalar), CTD, transmissometer, ADCP, but it can easily host other sensors for different experiments. The first phase of the project, started in November 1995, was concluded with the demonstration mission in Adriatic Sea at shallow water depth (42 m) in August - September 1998. Some preliminary results of this first scientific experiment are presented and discussed. The second phase, started in 1999, will end with a long-term deep sea scientific mission, scheduled during 2000 for 6-8 months at 3400 m.w.d. in the southern Tyrrhenian bathyal plain.
    Description: Published
    Description: 491-497
    Description: 3A. Ambiente Marino
    Description: N/A or not JCR
    Description: restricted
    Keywords: Deep-sea researches with multidisciplinary observatories ; Geophysics ; Oceanography ; Tyrrhenian Sea ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-29
    Description: GEOSTAR is the prototype of the first European long-term, multidisciplinary deep sea observatory for continuous monitoring of geophysical, geochemical and oceanographic parameters. Geostar is the example of a strong synergy between science and tecnology addressed to the development of new technological solutions for the observatory realisation and management. The GEOSTAR system is described outlining the enhancements introduced during five years of project activity. An example of data retrieved from the observatory being the deep sea mission running is also given.
    Description: Published
    Description: 111-120
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: reserved
    Keywords: Ocean Bottom Seismometer ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...