GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bailey, Allison; Thor, Peter; Browman, Howard I; Fields, David M; Runge, Jeffrey A; Vermont, Alexander; Bjelland, Reidun; Thompson, Cameron; Shema, Steven; Durif, Caroline M F; Hop, Haakon (2016): Early life stages of the Arctic copepod Calanus glacialis are unaffected by increased seawater pCO2. ICES Journal of Marine Science, fsw066, https://doi.org/10.1093/icesjms/fsw066
    Publication Date: 2024-03-15
    Description: As the world's oceans continue to absorb anthropogenic CO2 from the atmosphere, the carbonate chemistry of seawater will change. This process, termed ocean acidification, may affect the physiology of marine organisms. Arctic seas are expected to experience the greatest decreases in pH in the future, as changing sea ice dynamics and naturally cold, brackish water, will accelerate ocean acidification. In this study, we investigated the effect of increased pCO2 on the early developmental stages of the key Arctic copepod Calanus glacialis. Eggs from wild-caught C. glacialis females from Svalbard, Norway (80°N), were cultured for 2 months to copepodite stage C1 in 2°C seawater under four pCO2 treatments (320, 530, 800, and 1700 matm). Developmental rate, dry weight, and carbon and nitrogen mass were measured every other day throughout the experiment, and oxygen consumption rate was measured at stages N3, N6, and C1. All endpoints were unaffected by pCO2 levels projected for the year 2300. These results indicate that naupliar development in wild populations of C. glacialis is unlikely to be detrimentally affected in a future high CO2 ocean.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Arctic; Arthropoda; Bicarbonate ion; Bicarbonate ion, standard error; Biomass/Abundance/Elemental composition; Calanus glacialis; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon content per individual; Carbon content per individual, standard error; Carbon dioxide; Carbon dioxide, standard error; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Development; Dry mass; Dry mass, standard error; Duration, number of days; Duration, number of days, standard error; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Median development time; Median development time, standard error; Nitrate; Nitrate, standard error; Nitrite; Nitrite, standard error; Nitrogen content per individual; Nitrogen content per individual, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Phosphate; Phosphate, standard error; Polar; Potentiometric titration; Registration number of species; Replicates; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, per individual; Respiration rate, oxygen, standard error; Rijpfjorden_OA; Salinity; Salinity, standard error; Silicate; Silicate, standard error; Single species; Species; Spectrophotometric; Stage; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1332 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Maneja, Rommel H; Frommel, Andrea Y; Browman, Howard I; Geffen, Audrey J; Folkvord, Arild; Piatkowski, Uwe; Durif, Caroline M F; Bjelland, Reidun; Skiftesvik, Anne Berit; Clemmesen, Catriona (2015): The swimming kinematics and foraging behavior of larval Atlantic herring (Clupea harengus L.) are unaffected by elevated pCO2. Journal of Experimental Marine Biology and Ecology, 466, 42-48, https://doi.org/10.1016/j.jembe.2015.02.008
    Publication Date: 2024-03-27
    Description: Data on kinematics of swimming behavior of Atlantic herring larvae cultured in the laboratory under three pCO2 conditions (control - 370, medium - 1800, and high - 4200 µatm) were extracted at 34 days post-hatch (dph) from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for move duration, speed and length, stop duration, and horizontal and vertical turn angles to determine the effects of elevated pCO2 on fish larval behavior.
    Keywords: Animalia; Behaviour; BIOACID; Biological Impacts of Ocean Acidification; Chordata; Clupea harengus; Coast and continental shelf; Espegrend_Marine_Station; EXP; Experiment; Laboratory experiment; Mesocosm or benthocosm; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Pelagos; Single species; Temperate
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Maneja, Rommel H; Frommel, Andrea Y; Browman, Howard I; Clemmesen, Catriona; Geffen, Audrey J; Folkvord, Arild; Piatkowski, Uwe; Durif, Caroline M F; Bjelland, Reidun; Skiftesvik, Anne Berit (2013): The swimming kinematics of larval Atlantic cod, Gadus morhua L., are resilient to elevated seawater pCO2. Marine Biology, 160(8), 1963-1972, https://doi.org/10.1007/s00227-012-2054-y
    Publication Date: 2024-03-27
    Description: Kinematics of swimming behavior of larval Atlantic cod, aged 12 and 27 days post-hatch (dph) and cultured under three pCO2 conditions (control-370, medium-1800, and high-4200 µatm) from March to May 2010, were extracted from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for swim duration, distance and speed, stop duration, and horizontal and vertical turn angles to determine whether elevated seawater pCO2-at beyond near-future ocean acidification levels-affects the swimming kinematics of Atlantic cod larvae. There were no significant differences in most of the variables tested: the swimming kinematics of Atlantic cod larvae at 12 and 27 dph were highly resilient to extremely elevated pCO2 levels. Nonetheless, cod larvae cultured at the highest pCO2 concentration displayed vertical turn angles that were more restricted (median turn angle, 15°) than larvae in the control (19°) and medium (19°) treatments at 12 dph (but not at 27 dph). Significant reduction in the stop duration of cod larvae from the high treatment (median stop duration, 0.28 s) was also observed compared to the larvae from the control group (0.32 s) at 27 dph (but not at 12 dph). The functional and ecological significance of these subtle differences are unclear and, therefore, require further investigation in order to determine whether they are ecologically relevant or spurious.
    Keywords: Age; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; EPOCA; Espegrend_Marine_Station; European Project on Ocean Acidification; EXP; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gadus morhua; Horizontal turn angle; Laboratory experiment; Mesocosm or benthocosm; Move duration; Move speed; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Replicate; Salinity; Salinity, standard deviation; Single species; Species; Stop duration; Swim distance; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Vertical turn angle
    Type: Dataset
    Format: text/tab-separated-values, 1792179 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aluru, N., Fields, D. M., Shema, S., Skiftesvik, A. B., & Browman, H. I. Gene expression and epigenetic responses of the marine Cladoceran, Evadne nordmanni, and the copepod, Acartia clausi, to elevated CO2. Ecology and Evolution, 11, (2021): 16776– 16785, https://doi.org/10.1002/ece3.8309.
    Description: Characterizing the capacity of marine organisms to adapt to climate change related drivers (e.g., pCO2 and temperature), and the possible rate of this adaptation, is required to assess their resilience (or lack thereof) to these drivers. Several studies have hypothesized that epigenetic markers such as DNA methylation, histone modifications and noncoding RNAs, act as drivers of adaptation in marine organisms, especially corals. However, this hypothesis has not been tested in zooplankton, a keystone organism in marine food webs. The objective of this study is to test the hypothesis that acute ocean acidification (OA) exposure alters DNA methylation in two zooplanktonic species—copepods (Acartia clausii) and cladocerans (Evadne nordmanii). We exposed these two species to near-future OA conditions (400 and 900 ppm pCO2) for 24 h and assessed transcriptional and DNA methylation patterns using RNA sequencing and Reduced Representation Bisulfite Sequencing (RRBS). OA exposure caused differential expression of genes associated with energy metabolism, cytoskeletal and extracellular matrix functions, hypoxia and one-carbon metabolism. Similarly, OA exposure also caused altered DNA methylation patterns in both species but the effect of these changes on gene expression and physiological effects remains to be determined. The results from this study form the basis for studies investigating the potential role of epigenetic mechanisms in OA induced phenotypic plasticity and/or adaptive responses in zooplanktonic organisms.
    Description: This research was supported by funding from the Institute of Marine Research and the High North Research Centre for Climate and the Environment (The Fram Centre) under project # 14591-02 to HIB.
    Keywords: climate change ; DNA methylation ; ocean acidification ; marine cladocerans ; RNAsequencing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 80 (1989), S. 100-110 
    ISSN: 1432-1939
    Keywords: Optimal foraging behavior ; Predation cycle ; Behavioral ecology ; Saltatory search
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Foraging is one of the most important endeavors undertaken by animals, and it has been studied intensively from both mechanistic-empirical and optimal foraging perspectives. Planktivorous fish make excellent study organisms for foraging studies because they feed frequently and in a relatively simple environment. Most optimal foraging studies of planktivorous fish have focused, either on diet choice or habitat selection and have assumed that these animals used a cruise search foraging strategy. We have recently recognized that white crappie do not use a cruise search strategy (swimming continuously and searching constantly) while foraging on zooplankton but move in a stop and go pattern, searching only while paused. We have termed thissaltatory search. Many other animals move in a stop and go pattern while foraging, but none have been shown to search only while paused. Not only do white crappie search in a saltatory manner but the components of the search cycle change when feeding on prey of different size. When feeding on large prey these fish move further and faster after an unsuccessful search than when feeding on small prey. The fish also pause for a shorter period to search when feeding on large prey. To evaluate the efficiency of these alterations in the search cycle, a net energy gain simulation model was developed. The model computes the likelihood of locating 1 or 2 different size classes of zooplankton prey as a function of the volume of water scanned. The volume of new water searched is dependent upon the dimensions of the search volume and the length of the run. Energy costs for each component of the search cycle, and energy gained from the different sized prey, were assessed. The model predicts that short runs produce maximum net energy gains when crappie feed on small prey but predicts net energy gains will be maximized with longer runs when crappie feed on large prey or a mixed assemblage of large and small prey. There is an optimal run length due to high energy costs of unsuccessful search when runs are short and reveal little new water, and high energy costs of long runs when runs are lengthy. The model predicts that if the greater search times observed when crappie feed on small prey are assessed when they feed on a mixed diet of small and large prey, net energy gained is less than if small prey are deleted from the diet. We believe the model has considerable generality. Many animals are observed to move in a saltatory manner while foraging and some are thought to search only while stationary. Some birds and lizards are, known to modify the search cycle in a manner similar to white crappie.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Environmental biology of fishes 34 (1992), S. 181-195 
    ISSN: 1573-5133
    Keywords: Teleost fish ; Foraging behavior ; Zooplanktivory ; Pause-travel search ; Saltatory search ; Locomotory pattern ; Prey encounter rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Synopsis Animals that forage for discrete, isolated resources are often characterized as either ‘ambush’ (sit-and-wait) or ‘cruise’ (active) searchers. Juvenile white crappie, Pomoxis annularis, search for zooplankton prey using a saltatory search (SS) strategy. Unlike ambush and cruise search, SS involves scanning for prey only during the brief stationary periods that punctuate repositioning movements. If prey are not found, these fish swim a short distance, stop, and scan again. In this paper, we describe the ontogeny of prey search in the white crappie and compare the search pattern that they employ with that of juveniles. White crappie larvae searched for prey throughout the search space and only during the pauses that punctuated swimming movements. Prey location distances increased with fish size, as did several other components of the predation cycle. We conclude that white crappie larvae employ a search strategy similar to that exhibited by juveniles. We emphasize that, to obtain an accurate assessment of the feeding ecology of early life history stages, the search pattern that they employ must be characterized, and its components quantified.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Environmental biology of fishes 16 (1986), S. 25-33 
    ISSN: 1573-5133
    Keywords: Optimal foraging ; Prey selection ; Learning ; Memory ; Perception ; Cognition ; Neuroethology ; Salmo salar
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Synopsis The positive relationship between size of prey and frequency of ingestion by predators has been a focal point of investigations in foraging ecology. Field studies compare the frequency distribution of prey sizes in the predator's gut with that in the environment. Laboratory and field (enclosure) studies are based upon comparison of the frequency distributions of prey sizes in controlled environments, before and after the introduction of a predator. ‘Optimal’ caloric return for foraging effort (i.e. the theory of optimal foraging) has been widely used as a guiding principle in attempts to explain what a fish consumes. There is a body of information, however, which seems to indicate that the perceptual potentialities and cognitive abilities of a predator can account for both the direction of the prey size versus ingestion frequency relationship and the variance surrounding it. Part of this variance may be evidence of ‘systematic ambiguity’, a property of cognitive skills causing predators to respond to the same stimulus in different ways and to different stimuli in the same way. More extensive examination of cognitive skills (minimally defined as learning, remembering and forgetting) in fish may permit causal interpretations (immediate and ultimate) of variance in predatory skills. In such a paradigm of foraging behaviour, environmental stimulus is not taken as the predator's object of response (percept); a cognitive representation connects mind to stimulus and this is the criterion for the act of perception. Cognition, here considered as a formal system which acts upon representations, connects mind to response and thus to adaptation. Studies of the relationships among rates of learning, long and short-term memory, rates of forgetting, prey behavior, size and population turnover rates, lateralization of brain functions, diel fluctuations in predator activity levels and sleep, experience, and ‘critical periods’ in the development of the predator's nervous system should be examined in relation to foraging behaviour.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Environmental biology of fishes 36 (1993), S. 103-104 
    ISSN: 1573-5133
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-13
    Description: The kinematics of swimming behavior of Atlantic herring larvae cultured under three pCO2 conditions (control - 370, medium - 1800, and high - 4200μatm) were extracted at 34days post-hatch (dph) from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for move duration, speed and length, stop duration, and horizontal and vertical turn angles to determine the effects of elevated pCO2 on fish larval behavior. The swimming kinematics and occurrence of S-postures in Atlantic herring larvae that had survived to 34-dph were unaffected by extremely elevated levels of seawater pCO2, indicating that at least some larvae in the population are resilient to ocean acidification.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-04-22
    Description: Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...