GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    ISSN: 0992-7689
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract The effect of contrails and aircraft water vapour emissions on global climate is studied by means of a general circulation model (GCM). In a first approach water vapour emissions and mean contrail coverage within the main flight routes are prescribed according to current observations in a simplified manner. A hierarchic experiment strategy with gradual increase of the forcing is applied to identify the resulting climate signals. The water vapour increase to be expected from air traffic is too small to force a detectable radiative or climatic response. The sensitivity of the model climate to the occurrence of contrails appears to be higher. For mid-latitude summer conditions, the high cloud increase experiments show a consistent temperature response pattern. However, its magnitude is statistically significant only for a mean contrail coverage exceeding present-day amounts. Moreover, the magnitude of the contrail climate signal is highly sensitive to the details of the experimental setup due to several non-linearities of the cloud-radiative interaction. Hence, the prescription of contrails in the GCM has to be as careful as possible for an optimal treatment of the problem. Respective recommendations are given.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Copernicus Publications
    In:  EPIC3Atmospheric Chemistry and Physics, Copernicus Publications, 15(10), pp. 5537-5555, ISSN: 1680-7324
    Publikationsdatum: 2015-12-09
    Beschreibung: This modelling study aims at an improved understanding of the processes that determine the water vapour budget in the stratosphere by means of the investigation of water isotope ratios. An additional (and separate from the actual) hydrological cycle has been introduced into the chemistry–climate model EMAC, including the water isotopologues HDO and H2 18 O and their physical fractionation processes. Additionally an explicit computation of the contribution of methane oxidation to H2O and HDO has been incorporated. The model expansions allow detailed analyses of water vapour and its isotope ratio with respect to deuterium throughout the stratosphere and in the transition region to the troposphere. In order to assure the correct representation of the water isotopologues in the model’s hydrological cycle, the expanded system has been evaluated in several steps. The physical fractionation effects have been evaluated by comparison of the simulated isotopic composition of precipitation with measurements from a ground-based network (GNIP) and with the results from the isotopologue-enabled general circulation model ECHAM5-wiso. The model’s representation of the chemical HDO precursor CH3D in the stratosphere has been confirmed by a comparison with chemical transport models (1-D, CHEM2D) and measurements from radiosonde flights. Finally, the simulated stratospheric HDO and the isotopic composition of water vapour have been evaluated, with respect to retrievals from three different satellite instruments (MIPAS, ACE-FTS, SMR). Discrepancies in stratospheric water vapour isotope ratios between two of the three satellite retrievals can now partly be explained.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  EPIC3European Conference on Aviation, Atmosphere and Climate (AAC) : Proceedings of an International Conference Friedrichshafen, Germany, 30 June to 3 July 2003 / edited by Robert Sausen, Christine Fichter and Georgios Amanatidis.(Air pollution research report, 197, ISBN: 92-894-5434-2
    Publikationsdatum: 2019-07-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...