GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2018-12-14
    Description: New observations from the North Sea, a NW European shelf sea, show that between 2001 and 2005 the CO2 partial pressure (pCO2) in surface waters rose by 22 μatm, thus faster than atmospheric pCO2, which in the same period rose approximately 11 μatm. The surprisingly rapid decline in air‐sea partial pressure difference (ΔpCO2) is primarily a response to an elevated water column inventory of dissolved inorganic carbon (DIC), which, in turn, reflects mostly anthropogenic CO2 input rather than natural interannual variability. The resulting decline in the buffering capacity of the inorganic carbonate system (increasing Revelle factor) sets up a theoretically predicted feedback loop whereby the invasion of anthropogenic CO2 reduces the ocean's ability to uptake additional CO2. Model simulations for the North Atlantic Ocean and thermodynamic principles reveal that this feedback should be stronger, at present, in colder midlatitude and subpolar waters because of the lower present‐day buffer capacity and elevated DIC levels driven either by northward advected surface water and/or excess local air‐sea CO2 uptake. This buffer capacity feedback mechanism helps to explain at least part of the observed trend of decreasing air‐sea ΔpCO2 over time as reported in several other recent North Atlantic studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Biogeosciences, 118 (4). pp. 1584-1592.
    Publication Date: 2018-02-06
    Description: High biological activity causes a distinct seasonality of surface water pH in the North Sea, which is a strong sink for atmospheric CO2 via an effective shelf pump. The intimate connection between the North Sea and the North Atlantic Ocean suggests that the variability of the CO2 system of the North Atlantic Ocean may, in part, be responsible for the observed variability of pH and CO2 in the North Sea. In this work, we demonstrate the role of the North Atlantic Oscillation (NAO), the dominant climate mode for the North Atlantic, in governing this variability. Based on three extensive observational records covering the relevant levels of the NAO index, we provide evidence that the North Sea pH and CO2 system strongly responds to external and internal expressions of the NAO. Under positive NAO, the higher rates of inflow of water from the North Atlantic Ocean and the Baltic outflow lead to a strengthened north-south biogeochemical divide. The limited mixing between the north and south leads to a steeper gradient in pH and partial pressure of CO2 (pCO2) between the two regions in the productive period. This is exacerbated further when coinciding with higher sea surface temperature, which concentrates the net community production in the north through shallower stratification. These effects can be obscured by changing properties of the constituent North Sea water masses, which are also influenced by NAO. Our results highlight the importance of examining interannual trends in the North Sea CO2 system with consideration of the NAO state.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The 3-d coupled physical–biogeochemical model ECOHAM (version 3) was applied to the Northwest-European Shelf (47°41′–63°53′N, 15°5′W–13°55′E) for the years 1993–1996. Carbon fluxes were calculated for the years 1995 and 1996 for the inner shelf region, the North Sea (511,725 km2). This period was chosen because it corresponds to a shift from a very high winter-time North Atlantic Oscillation Index (NAOI) in 1994/1995, to an extremely low one in 1995/1996, with consequences for the North Sea physics and biogeochemistry. During the first half of 1996, the observed mean SST was about 1 °C lower than in 1995; in the southern part of the North Sea the difference was even larger (up to 3 °C). Due to a different wind regime, the normally prevailing anti-clockwise circulation, as found in winter 1995, was replaced by more complicated circulation patterns in winter 1996. Decreased precipitation over the drainage area of the continental rivers led to a reduction in the total (inorganic and organic) riverine carbon load to the North Sea from 476 Gmol C yr−1 in 1995 to 340 Gmol C yr−1 in 1996. In addition, the North Sea took up 503 Gmol C yr−1 of CO2 from the atmosphere. According to our calculations, the North Sea was a sink for atmospheric CO2, at a rate of 0.98 mol C m−2 yr−1, for both years. The North Sea is divided into two sub-systems: the shallow southern North Sea (SNS; 190,765 km2) and the deeper northern North Sea (NNS; 320,960 km2). According to our findings the SNS is a net-autotrophic system (net ecosystem production NEP〉0) but released CO2 to the atmosphere: 159 Gmol C yr−1 in 1995 and 59 Gmol C yr−1 in 1996. There, the temperature-driven release of CO2 outcompetes the biological CO2 drawdown. In the NNS, where respiratory processes prevail (NEP〈0), 662 and 562 Gmol C yr−1 were taken up from the atmosphere in 1995 and 1996, respectively. Stratification separates the productive, upper layer from the deeper layers of the water column where respiration/remineralization takes place. Duration and stability of the stratification are determined by the meteorological conditions, in relation to the NAO. Our results suggest that this mechanism controlling the nutrient supply to the upper layer in the northern and central North Sea has a larger impact on the carbon fluxes than changes in lateral transport due to NAOI variations. The North Sea as a whole imports organic carbon and exports inorganic carbon across the outer boundaries, and was found to be net-heterotrophic, more markedly in 1996 than in 1995.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate (10–30 μm), medium (30–60 μm), and large (〉60 μm) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of “dissolved” Fe (filtrate 〈 0.2 μm) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the “dissolved” pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe ∼ 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr−1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr−1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr−1).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-27
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-25
    Description: Total alkalinity (AT) and dissolved inorganic carbon (CT) in the oceans are important properties with respect to understanding the ocean carbon cycle and its link to global change (ocean carbon sinks and sources, ocean acidification) and ultimately finding carbon-based solutions or mitigation procedures (marine carbon removal). We present a database of more than 44 400 AT and CT observations along with basic ancillary data (spatiotemporal location, depth, temperature and salinity) from various ocean regions obtained, mainly in the framework of French projects, since 1993. This includes both surface and water column data acquired in the open ocean, coastal zones and in the Mediterranean Sea and either from time series or dedicated one-off cruises. Most AT and CT data in this synthesis were measured from discrete samples using the same closed-cell potentiometric titration calibrated with Certified Reference Material, with an overall accuracy of ±4 µmol kg−1 for both AT and CT. The data are provided in two separate datasets – for the Global Ocean and the Mediterranean Sea (https://doi.org/10.17882/95414, Metzl et al., 2023), respectively – that offer a direct use for regional or global purposes, e.g., AT–salinity relationships, long-term CT estimates, and constraint and validation of diagnostic CT and AT reconstructed fields or ocean carbon and coupled climate–carbon models simulations as well as data derived from Biogeochemical-Argo (BGC-Argo) floats. When associated with other properties, these data can also be used to calculate pH, the fugacity of CO2 (fCO2) and other carbon system properties to derive ocean acidification rates or air–sea CO2 fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bakker, Dorothee C E; Pfeil, Benjamin; Smith, Karl; Hankin, Steven; Olsen, Are; Alin, Simone R; Cosca, Catherine E; Harasawa, Sumiko; Kozyr, Alexander; Nojiri, Yukihiro; O'Brien, Kevin M; Schuster, Ute; Telszewski, Maciej; Tilbrook, Bronte; Wada, Chisato; Akl, John; Barbero, Leticia; Bates, Nicolas R; Boutin, Jacqueline; Bozec, Yann; Cai, Wei-Jun; Castle, Robert D; Chavez, Francisco P; Chen, Lei; Chierici, Melissa; Currie, Kim I; de Baar, Hein J W; Evans, Wiley; Feely, Richard A; Fransson, Agneta; Gao, Zhongyong; Hales, Burke; Hardman-Mountford, Nicolas J; Hoppema, Mario; Huang, Wei-Jen; Hunt, Christopher W; Huss, Betty; Ichikawa, Tadafumi; Johannessen, Truls; Jones, Elizabeth M; Jones, Steve D; Jutterstrøm, Sara; Kitidis, Vassilis; Körtzinger, Arne; Landschützer, Peter; Lauvset, Siv K; Lefèvre, Nathalie; Manke, Ansley; Mathis, Jeremy T; Merlivat, Liliane; Metzl, Nicolas; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M; Ono, Tsuneo; Park, Geun-Ha; Paterson, Kristina; Pierrot, Denis; Ríos, Aida F; Sabine, Christopher L; Saito, Shu; Salisbury, Joe; Sarma, Vedula V S S; Schlitzer, Reiner; Sieger, Rainer; Skjelvan, Ingunn; Steinhoff, Tobias; Sullivan, Kevin; Sun, Heng; Sutton, Adrienne; Suzuki, Toru; Sweeney, Colm; Takahashi, Taro; Tjiputra, Jerry; Tsurushima, Nobuo; van Heuven, Steven; Vandemark, Doug; Vlahos, Penny; Wallace, Douglas WR; Wanninkhof, Rik; Watson, Andrew J (2014): An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth System Science Data, 6(1), 69-90, https://doi.org/10.5194/essd-6-69-2014
    Publication Date: 2024-02-17
    Description: The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 2669 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bakker, Dorothee C E; Pfeil, Benjamin; Landa, Camilla S; Metzl, Nicolas; O'Brien, Kevin M; Olsen, Are; Smith, Karl; Cosca, Catherine E; Harasawa, Sumiko; Jones, Steve D; Nakaoka, Shin-Ichiro; Nojiri, Yukihiro; Schuster, Ute; Steinhoff, Tobias; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wada, Chisato; Wanninkhof, Rik; Alin, Simone R; Balestrini, Carlos F; Barbero, Leticia; Bates, Nicolas R; Bianchi, Alejandro A; Bonou, Frédéric Kpédonou; Boutin, Jacqueline; Bozec, Yann; Burger, Eugene; Cai, Wei-Jun; Castle, Robert D; Chen, Liqi; Chierici, Melissa; Currie, Kim I; Evans, Wiley; Featherstone, Charles; Feely, Richard A; Fransson, Agneta; Goyet, Catherine; Greenwood, Naomi; Gregor, Luke; Hankin, Steven; Hardman-Mountford, Nicolas J; Harlay, Jérôme; Hauck, Judith; Hoppema, Mario; Humphreys, Matthew P; Hunt, Christopher W; Huss, Betty; Ibánhez, J Severino P; Johannessen, Truls; Keeling, Ralph F; Kitidis, Vassilis; Körtzinger, Arne; Kozyr, Alexander; Krasakopoulou, Evangelia; Kuwata, Akira; Landschützer, Peter; Lauvset, Siv K; Lefèvre, Nathalie; Lo Monaco, Claire; Manke, Ansley; Mathis, Jeremy T; Merlivat, Liliane; Millero, Frank J; Monteiro, Pedro M S; Munro, David R; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M; Ono, Tsuneo; Paterson, Kristina; Pearce, David J; Pierrot, Denis; Robbins, Lisa L; Saito, Shu; Salisbury, Joe; Schlitzer, Reiner; Schneider, Bernd; Schweitzer, Roland; Sieger, Rainer; Skjelvan, Ingunn; Sullivan, Kevin; Sutherland, Stewart C; Sutton, Adrienne; Tadokoro, Kazuaki; Telszewski, Maciej; Tuma, Matthias; van Heuven, Steven; Vandemark, Doug; Ward, Brian; Watson, Andrew J; Xu, Suqing (2016): A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383-413, https://doi.org/10.5194/essd-8-383-2016
    Publication Date: 2024-02-17
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.5 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.4 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This living data publication documents changes in the methods and data sets used in this new version of the SOCAT data collection compared with previous publications of this data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 3657 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-17
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (〉100 contributors). SOCAT version 4 has 18.5 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations with an accuracy of better than 5 µatm from 1957 to 2015 for the global oceans and coastal seas. Automation of data upload and initial data checks speeds up data submission and allows annual releases of SOCAT from version 4 onwards. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT represents a milestone in research coordination, data access, biogeochemical and climate research and in informing policy.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 1265 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...